服务粉丝

我们一直在努力
当前位置:首页 > 财经 >

深圳大学田雷&朱才镇&徐坚团队Angew:纤维素基准固态聚合物电解质实现超长稳定循环

日期: 来源:能源学人收集编辑:Energist
【研究背景】
固态聚合物电解质(SPE)以其高安全性、能量密度、耐高温、不易燃易爆而闻名。此外,它还具有能量密度高、工作温度范围广、加工性能好等优点。然而,由于SPE在室温下的离子导电率低(<10-3 S cm-1),且与电极的界面性能差,因此尚未在实践中应用。作为一种具有巨大潜力的聚合物电解质,准固体聚合物电解质(QPE)可以有效地克服与电极接触性能差的问题。然而,QPE存在各种问题,如溶剂残留和机械性能不足,限制了它的进一步发展。增强QPE的策略包括混合、共聚、添加无机填料和增塑剂。但到目前为止,由于Li+迁移和机械性能的限制,大多数用于季铵盐复合电解质的聚合物基体,如聚(偏氟乙烯-六氟丙烯)、聚丙烯腈和聚环氧乙烷,已经无法满足长循环性和抑制锂枝晶的需求。

纤维素(CLS)是一种天然聚合物,是人类最宝贵的天然可再生资源。由于有许多极性化学基团(如-OH、-O-),它具有离子传导能力,这使它成为QPE的候选聚合物基体。然而,纤维素表现出不溶性,加工性差,并且由于密集的分子链大大阻碍了Li+的传输,因此Li+的传导性较低。改性纤维素已成为克服瓶颈问题的重要手段。例如,Liao等人通过冰分离诱导的自组装,用羟乙基纤维素基纤维素气凝胶改性聚丙烯膜,表现出更高的电解质吸收率、更高的离子传导性和更好的循环性能。作为由纤维素中的羟基酯化产生的商业衍生物,醋酸纤维素(CLA)表现出与电极的良好兼容性,成膜性和电绝缘性。这些特性使CLA在QPE中发挥重要作用。
图1. 基于CLA的QPE的结构和离子传输通道示意图。纤维素(a)和CLA(b)的结构和特性的差异。插入纤维素分子链的CH3COO-结构打开了Li+传输通道,提高了Li+离子的传导性。
         
【工作介绍】
近日,深圳大学田雷&朱才镇&徐坚团队提出了一种策略,通过直接对醋酸纤维素(CLA)进行热成型来制备一种准固体的复合聚合物电解质来解决低离子传导率和聚合物电解质/电极不相容的问题。CLA上的乙酸酯(CH3COO-)打破了纤维素链之间巨大的氢键相互作用,提供了高速的Li+传输通道。通过与LATP结合,形成的复合电解质(C-CLA-10 QPE)显示出较高的Li+传输数(tLi+)=0.85,普遍高于大多数聚合物电解质。
图2. 基于CLA的QPE的制备和表征。
图3. 基于CLA based QPE的Li+传输特性和电化学性能。
         
本文中C-CLA-10 QPE能够实现高度稳定的锂剥离/电镀循环,时间超过1800小时,显示出良好的电化学稳定性和与电极的界面接触。此外,LiFePO4 |C-CLA-1 QPE|Li电池显示出140 mAh g-1的可逆放电容量,在1 C时具有4.2 V的高工作截止电压。重要的是,该电池表现出优异的长期循环稳定性(1200次循环后为97.7%)。此外,DFT模拟被用来研究CLA和纤维素(CLS)基体与LiFePO4的相互作用,以研究CH3COO-的影响。CLA和CLS片段分别在LiFePO4晶格的(001)表面上最有利的原子配置。CLA表现出比CLS更高的与LiFePO4的结合能,表明纤维素的酯化增强了循环过程中的稳定性。因此,它促进了SEI层的均匀形成和锂的均匀沉积,这反过来又提高了电化学稳定性。高斯理论模拟进一步研究了Li+与CLA之间的相互作用,发现Li+在传输过程中可以与CLA基体中丰富的含氧官能团形成多种配位,包括与-OH和-CH3COO-配位,以及与-OH、-CH3COO-和-O-配位。DFT模拟显示,当Li+与-OH和-CH3COO-配位时,产生的解离能较低,揭示了由-OH和-CH3COO-形成的通道对Li+自由度的阻碍较小,并为Li+的快速运输提供了途径。
图4. 基于CLA的QPE的循环性能。
图5. 基于CLA的QPE的电极界面特性。(a) C-CLA-1 QPE在Li|Li电池中运行20个循环后的锂金属表面的Li 1s和(b) F 1s XPS光谱;C-CLA-1 QPE在1 C LFP|C-CLA-1 QPE|Li循环1000个循环之前(c)和之后(d)的SEM图像;CLA (e) 和CLS (f) 与LiFePO4的优化几何结构和结合能量。         
图6. 基于CLA的QPE的离子传输机制和电化学稳定性模拟。(a) CLA的优化结构;(b) CLA与Li+结合的优化结构和解离能;(c) CLA与Li+结合的MEPS图;(d) CLA基QPE的离子传输机制示意图;(e) CLA和LiTFSI与普通聚合物的HOMO和LUMO能级比较。
           
这项工作为制备低成本和高性能的固态电池提供了一个有希望的策略。该文章发表在国际顶级期刊Angewandte Chemie International Edition。硕士生王岱,博士生谢辉为本文的第一作者。
         
Dai Wang, Hui Xie, Qiang Liu, Kexin Mu, Zhennuo Song, Weijian Xu, Lei Tian, Caizhen Zhu, Jian Xu. Low-Cost, High-Strength Cellulose-based Quasi-Solid Polymer Electrolyte for Solid-State Lithium-Metal Batteries. Angew. Chem. Int. Ed. 2023.
https://doi.org/10.1002/anie.202302767
           
作者简介
田雷 深圳大学特聘副研究员,助理教授,硕士生导师,深圳市海外高层次人才。现任《高分子通报》编委。主要从事离子、电子双导高性能高分子材料的研究,包括高分子能源材料、宽温域高电导固态聚合物电解质、高安全高能量密度固态聚合物电池以及高强高韧软电子材料的设计制备与应用等,主持或参与国家自然基金重点项目、省市重点项目等多项,在Angew. Chem. Int. Ed.,Macromolecules等国际知名期刊上发表学术论文40多篇。

团队长期招聘博士后/研究助理。研究方向包括但不限于高分子合成、固态聚合物电解质、计算化学等。

科研创新!一种新型“弱配位结构锂盐”:可以替代LiPF6、可以量产

2023-03-13

这篇AEnM值得珍藏:多角度揭秘“硫化物”固态电解质

2023-03-13

吉林大学徐吉静课题组JACS:MOF电子/离子混合导体构筑光辅助固态锂空气电池

2023-03-13

利用协同集成快离子导体实现本质安全及高能量密度的4.5V锂离子电池

2023-03-13

张皝副教授&Stefano Passerini教授:Cr掺杂有效激活V3+~V5+多电子反应,实现高能量密度和长循环水系锌电池

2023-03-13

中科大陈维Nano Letters:亲铝界面层实现无枝晶、高面容量的铝负极

2023-03-13

锂/钠/钾/锌离子电池、铅酸电池的界面腐蚀和应对策略

2023-03-12

康奈尔大学Lynden Archer:设计固体吸附聚合物/电解质界面稳定锌电和锂电的金属负极

2023-03-11

使用水系粘结剂的NMC厚电极高倍率性能研究

2023-03-11

清华贺艳兵/深大黄妍斐/刘琛AEM: PVDF介电常数和构象调控同步促进锂盐解离和离子输运研究

2023-03-11

相关阅读

  • 成会明院士/周光敏,连发AM、Angew.!

  • 【做计算 找华算】理论计算助攻顶刊,10000+成功案例,全职海归技术团队、正版商业软件版权!经费预存选华算,高至15%预存增值!近日,清华大学深圳国际研究生院周光敏副教授与中科院深
  • 三天两篇AM+一篇JACS!黄维院士团队连发顶刊!

  • 【做计算 找华算】理论计算助攻顶刊,10000+成功案例,全职海归技术团队、正版商业软件版权!经费预存选华算,高至15%预存增值!1Adv. Mater.:功能化柔性量子点发光器件及其应用成果简

热门文章

  • “复活”半年后 京东拍拍二手杀入公益事业

  • 京东拍拍二手“复活”半年后,杀入公益事业,试图让企业捐的赠品、家庭闲置品变成实实在在的“爱心”。 把“闲置品”变爱心 6月12日,“益心一益·守护梦想每一步”2018年四

最新文章

  • 暧昧,到底是什么?

  • 点击上方蓝字“青年文摘”右上角“...”点选“设为星标”添加★标 不再错过推送每天 8点 12点 20点 不见不散~作者:社长的小号来源:社会学了没(ID:socialor)当我们说起暧昧时,是回