Self-assembly of colloidal metal–organic framework (MOF) particles
Chemical Society Reviews, Pub Date : 2023-03-17 ,
DOI: 10.1039/d2cs00858k
Javier Fonseca, Lingxin Meng, Inhar Imaz, Daniel Maspoch
Self-assembly of colloidal particles into ordered superstructures enables the development of novel advanced materials for diverse applications such as photonics, electronics, sensing, energy conversion, energy storage, diagnosis, drug or gene delivery, and catalysis. Recently, polyhedral metal–organic framework (MOF) particles have been proposed as promising colloidal particles to form ordered superstructures, based on their colloidal stability, size-tunability, rich polyhedral shapes, porosity and multifunctionality. In this review, we present a comprehensive overview of strategies for the self-assembly of colloidal MOF particles into ordered superstructures of different dimensionalities, highlighting some of their properties and applications, and sharing thoughts on the self-assembly of MOF particles.https://pubs.rsc.org/en/content/articlelanding/2023/cs/d2cs00858k
Quintuple Function Integration in Two-Dimensional Cr(II) Five-Membered Heterocyclic Metal Organic Frameworks via Tuning Ligand Spin and Lattice Symmetry
Journal of the American Chemical Society, Pub Date : 2023-03-16 , DOI: 10.1021/jacs.2c12780
Xiangyang Li, Qing-Bo Liu, Yongsen Tang, Wei Li, Ning Ding, Zhao Liu, Hua-Hua Fu, Shuai Dong, Xingxing Li, Jinlong YangTwo-dimensional (2D) semiconductors (SCs) integrated with two or more functions are the cornerstone for constructing multifunctional nanodevices but remain largely limited. Here, by tuning the spin state of organic linkers and the symmetry/topology of crystal lattices, we predict a class of unprecedented multifunctional SCs in 2D Cr(II) five-membered heterocyclic metal organic frameworks that simultaneously possess auxetic effect, room-temperature ferrimagnetism, chiral ferroelectricity (FE), electrically reversible spin polarization, and topological nodal lines/points. Taking 2D Cr(TDZ)2 (TDZ = 1.2.5-thiadiazole) as an exemplification, the auxetic effect is produced by the antitetra-chiral lattice structure. The high temperature ferrimagnetism originates from the strong d-p direct magnetic exchange interaction between Cr cations and TDZ doublet radical anions. Meanwhile, the clockwise–counterclockwise alignment of TDZ’s dipoles results in unique 2D chiral FE with atomic-scale vortex–antivortex states. 2D Cr(TDZ)2 is an intrinsic bipolar magnetic SC where half-metallic conduction with switchable spin-polarization direction can be induced by applying a gate voltage. In addition, the symmetry of the little group C4 of the lattice structure endows 2D Cr(TDZ)2 with tophttps://pubs.acs.org/doi/abs/10.1021/jacs.2c12780
Structure–Activity Relationship Insights for Organophosphonate Hydrolysis at Ti(IV) Active Sites in Metal–Organic Frameworks
Journal of the American Chemical Society , Pub Date : 2023-03-15 , DOI: 10.1021/jacs.2c13887
Mohammad Rasel Mian, Xijun Wang, Xingjie Wang, Kent O. Kirlikovali, Haomiao Xie, Kaikai Ma, Kira M. Fahy, Haoyuan Chen, Timur Islamoglu*, Randall Q. Snurr*, and Omar K. Farha*Organophosphorus nerve agents are among the most toxic chemicals known and remain threats to humans due to their continued use despite international bans. Metal–organic frameworks (MOFs) have emerged as a class of heterogeneous catalysts with tunable structures that are capable of rapidly detoxifying these chemicals via hydrolysis at Lewis acidic active sites on the metal nodes. To date, the majority of studies in this field have focused on zirconium-based MOFs (Zr-MOFs) that contain hexanuclear Zr(IV) clusters, despite the large toolbox of Lewis acidic transition metal ions that are available to construct MOFs with similar catalytic properties. In particular, very few reports have disclosed the use of a Ti-based MOF (Ti-MOF) as a catalyst for this transformation even though Ti(IV) is a stronger Lewis acid than Zr(IV). In this work, we explored five Ti-MOFs (Ti-MFU-4l, NU-1012-NDC, MIL-125, Ti-MIL-101, MIL-177(LT), and MIL-177(HT)) that each contains Ti(IV) ions in unique coordination environments, including monometallic, bimetallic, octanuclear, triangular clusters, and extended chains, as catalysts to explore how both different node structures and different linkers (e.g., azolate and carboxylate) influence the binding and subsequent hydrolysis of an organophosphorus nerve agent simulant at Ti(IV)-based active sites in basic aqueous solutions. Experimental and theoretical studies confirm that Ti-MFU-4l, which contains monometallic Ti(IV)–OH species, exhibits the best catalytic performance among this series with a half-life of roughly 2 min. This places Ti-MFU-4l as one of the best nerve agent hydrolysis catalysts of any MOF reported to date.
https://pubs.acs.org/doi/abs/10.1021/jacs.2c13887
Three-Component Donor−π–Acceptor Covalent–Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution
Journal of the American Chemical Society, Pub Date : 2023-03-14 , DOI: 10.1021/jacs.2c11893
Ziping Li, Tianqi Deng, Si Ma , Zhenwei Zhang, Gang Wu, Jiaao Wang, Qizhen Li 5 , Hong Xia, Shuo-Wang Yang, Xiaoming LiuTwo-dimensional covalent–organic frameworks (2D COFs) have recently emerged as great prospects for their applications as new photocatalytic platforms in solar-to-hydrogen conversion; nevertheless, their inefficient solar energy capture and fast charge recombination hinder the improvement of photocatalytic hydrogen production performance. Herein, two photoactive three-component donor−π–acceptor (TCDA) materials were constructed using a multicomponent synthesis strategy by introducing electron-deficient triazine and electron-rich benzotrithiophene moieties into frameworks through sp2 carbon and imine linkages, respectively. Compared with two-component COFs, the novel TCDA-COFs are more convenient in regulating the inherent photophysical properties, thereby realizing outstanding photocatalytic activity for hydrogen evolution from water. Remarkably, the first sp2 carbon-linked TCDA-COF displays an impressive hydrogen evolution rate of 70.8 ± 1.9 mmol g–1 h–1 with excellent reusability in the presence of 1 wt % Pt under visible-light illumination (420–780 nm). Utilizing the combination of diversified spectroscopy and theoretical prediction, we show that the full π-conjugated linkage not only effectively broadens the visible-light harvesting of COFs but also enhances charge transfer and separation efficiency.https://pubs.acs.org/doi/abs/10.1021/jacs.2c11893
Bodipy-Based Metal–Organic Frameworks Transformed in Solid States from 1D Chains to 2D Layer Structures as Efficient Visible Light Heterogeneous Photocatalysts for Forging C–B and C–C Bonds
Journal of the American Chemical Society ,Pub Date : 2023-03-13 , DOI: 10.1021/jacs.2c11647
Qingchun Xia, Jingli Yang, Suzhen Zhang, Jie Zhang , Zhiyong Li, Jianji Wang, Xuenian ChenBoron dipyrromethene (also known as bodipy), as a class of versatile and robust fluorophores and a structural analogue of porphyrins, has received a great deal of interests in the field of light-harvesting and energy-transfer processes. However, the fabrication of bodipy monomers into metal–organic frameworks (MOFs) and the exploitation of their potential still lags behind the porphyrin MOFs. In this work, two bodipy-based MOFs, BMOF 1D with 1D chain structure and BMOF 2D with 2D layer structure, were assembled by using dicarboxyl-functionalized bodipy ligands. BMOF 1D can also be converted to BMOF 2D by inserting additional ligands into BMOF 1D to cross-link the adjacent chains into the rhombic grid layer. During this process, spontaneous exfoliation occurred simultaneously and resulted in the formation of several hundred nanometer thickness BMOF 2D (nBMOF 2D), which can be further exfoliated into one-layer MOF nanosheets (BMON 2D) by using the ultrasonic liquid exfoliation method in a high yield. Featuring the distinct bodipy scaffolds in the porous frameworks, both BMOF 2D and BMON 2D displayed high reactivity and recyclability in the photocatalytic inverse hydroboration and cross-dehydrogenative coupling reactions to afford α-amino organoborons and α-amino amides in moderate to high yields. This work not only highlights the cascade utilization of ligand installation and ultrasonic liquid exfoliation methods to provide the single-layer MOF sheets in high yields but also advances the bodipy-based MOFs as a new type of heterogeneous photocatalysts in the forging of C–B and C–C bonds driven by visible light.https://pubs.acs.org/doi/abs/10.1021/jacs.2c11647
Bottom-Up Synthesis of Covalent Organic Frameworks with Quasi-Three-Dimensional Integrated Architecture via Interlayer Cross-Linking
Journal of the American Chemical Society, Pub Date : 2023-03-12 , DOI: 10.1021/jacs.3c00550
Fazheng Jin, Tonghai Wang, Han Zheng, En Lin, Yunlong Zheng, Liqin Hao, Ting Wang, Yao Chen, Peng Cheng, Kuang Yu*, and Zhenjie Zhang*Developing strategies to enhance the structural robustness of covalent organic frameworks (COFs) is of great importance. Here, we rationally design and synthesize a class of cross-linked COFs (CCOFs), in which the two-dimensional (2D) COF layers are anchored and connected by polyethylene glycol (PEG) or alkyl chains through covalent bonds. The bottom-up fabrication of these CCOFs is achieved by the condensation of cross-linked aldehyde monomers and tritopic amino monomers. All the synthesized CCOFs possess high crystallinity and porosity, and enhanced structural robustness surpassing the typical 2D COFs, which means that they cannot be exfoliated under ultrasonication and grinding due to the cross-linking effect. Furthermore, the cross-linked patterns of PEG units are uncovered by experimental results and Monte Carlo molecular dynamics simulations. It is found that all CCOFs are dominated by vertical cross-layer (interlayer) connections (clearly observed in high-resolution transmission electron microscopy images), allowing them to form quasi-three-dimensional (quasi-3D) structures. This work bridges the gap between 2D COFs and 3D COFs and provides an efficient way to improve the interlayered stability of COFs.https://pubs.acs.org/doi/abs/10.1021/jacs.3c00550