服务粉丝

我们一直在努力
当前位置:首页 > 财经 >

黄克靖 AEM综述|水系锌离子电池过渡金属硫/硒化物正极的研究进展

日期: 来源:研图汇收集编辑:

近日,广西民族大学黄克靖教授团队等人在Advanced Energy Materials上发表综述文章,论文题为Recent Advances of Transition Metal Sulfides/Selenides Cathodes for Aqueous Zinc-Ion Batteries。可充电锌离子电池因其安全性高、环保、成本低、兼容性好而在储能系统中引起了极大的关注。过渡金属硫化物和硒化物由于其独特的层状结构和可调的层间距而被认为是有希望的含水锌基化合物正极,用于加速水合锌的扩散和可逆嵌入。然而,它们的些缺陷严重阻碍了它们的实际应用,如较差的电子导电性、较大的离子扩散能垒和较差的循环稳定性。本文对改善过渡金属硫化物和硒化物正极材料电化学性能的各种改性策略,包括相工程、缺陷工程、层间插层、原位电化学氧化、杂化、掺杂效应和表面改性进行了分类和重点介绍,并针对具体的改性策略进行了讨论和总结。最后,作者提出了机理探索技术、电解质策略、协同工程、高容量转换型、高电压正极材料和摇椅型电池等几个重点突破方向,进一步推动水性ZIBs的发展,指导高性能水性ZIBs正极材料的设计。

第一作者:Honglei Shuai
通讯作者:Kejing Huang
通讯单位:广西民族大学
论文DOI:10.1002/aenm.202202992

Figure 1. Schematic illustration of the composition of rechargeable aqueous ZIBs. Reproduced with permission.I Copyright 2020, RSC. b) The ratio percentage of various cathode materials for aqueous ZIBs. Reproduced with permission.(3) Copyright 2019, Wiley-VCH. c) The brief development history of cathodes for aqueous ZIBs. d) Schematic diagram of the two-step Zn2* insertion/extraction process in VSe, cathode. Reproduced with permission.

Figure 2.   a) Schematic illustration of strategies developed to enhance Zn2+ diffusion kinetics. Reproduced with permission.IS0I Copyright 2019, American Chemical Society. b) HRTEM image of the MoS2/PANI-150 hybrid. c) The charge density. d) Band structures. Reproduced with permission.162) Copyright 2021, Elsevier. e) Schematic fabrication process and f) HRTEM image of h-MoS@CF. g) Schematic illustrations of hydrated Zn2+ inserts into dehydrated MoSz (left) and hydrated MoSz (right). h) Long-term cycling stability of h-Mosz@CF. Reproduced with permission.163) Copyright 2021, Elsevier.


Figure 3 a) Illustration of the rechargeable Zn/MoS2 battery system. b) HRTEM image of MoSz cathode. c) Calculated diffusion pathway of Zn from one octahedral site to a neighboring octahedral site via an adjacent tetrahedral site (left 2H phase and right IT phase MoS2). d) Calculated energy profiles of Zn diffusion in 2H phase and IT phase MoSz with different interlayer distances. e) Cycle properties of MoSz cathodes. Reproduced with permission.P Copyright 2020, Elsevier. f) Schematic illustration of the preparation process of MoS2. g) HRTEM image of 200- MoSz. h) HRTEM images of the in-plane 1T-MoSz. i) Cycle properties of MoSz cathodes at different temperatures. Reproduced with permission.

Figure 4 a) Atomic resolution ADF images of various intrinsic point defects present in monolayer CVD MoSz, including Vs, Vs2, Mos2, VMoS3, VMo56n and S2Mo- Reproduced with permission.P6 Copyright 2013, American Chemical Society. b) HAADF STEM image (SAED inset) and c) high-magnification HAADF STEM image of defect-free MoSz nanosheets. d) Long-term cyclic properties of defect-rich MoSz electrode. Reproduced with permission.[52) Copyright 2019, Elsevier. e) Illustration of the preparation process and the crystal structure of D-MoSz-O. f) HAADF-TEM image of D-MoS2-O. g) Zn-ion migration behaviors along the ab plane in MoSz with S-vacancy. h) Diagram of the flexible quasi-solid-state Zn-ion battery. i) Optical image of an LED array powered by five wearable series batteries. Reproduced with permission.

Figure 5. a) TEM images with SAED patterns, and b) HRTEM image of N-doped IT MoSz. c) EPR spectra of MoSz materials. Cycle stability at d) 1A g' and e) 3 A g-'. Reproduced with permission.191l Copyright 2021, American Chemical Society. f) Illustration of the synthetic process of C-MoSz-NC.g) Schematic illustration for the diffusion path of a Zn atom in the MoSz-NC model. h) The curves of diffusion energy barriers in the models of MoS2NC, MoS2-C, and MoS2. i) In situ synchrotron XRD patterns (2 = 0.6888 nm), the 2D contour map of peaks around 20 of 9.2°. j) Cycle performance of C-MoSy-NC cathode. k) Digital photographs of six wearable series batteries in real state, powering the LED array. Reproduced with permission.

Figure 6. a) Schematic synthesis of the MoS/graphene nanocomposites. b) Crystal structures of bulk MoS, and MoS/graphene. c) Zn-ion migration pathways in MoSz/graphene. d) The migration energy barriers of the bulk MoS, and MoSy-to-graphene distance. e) Long-term cycling stability of MoSz/graphene at 1 A g'. f) Schematic diagram of the flexible quasi-solid-state Zn-ion battery. g) Typical voltage curves under the various bending states of the quasi-solid-state MoS/graphene//Zn battery. Reproduced with permission.20 Copyright 2021, Wiley-VCH. h) The optimized diffusion paths of Zn2t in MoSz. i) The calculated energy profiles of Zn2* along the diffusion path in MoSz with different interlayer spacing.

Figure 7. a) Schematic illustration of the preparation processes for the binder-free hierarchical VS2@SS electrode. b) SEM image of the VS@SS electrode. c) Long-term cycling performance of the VS2@SS electrode at 1 and 2 A g-'. d) Long-term cycling performances at 500 and 50 mA g-1 (inset) with a mass loading of 11 mg cm-2. e) Cycling performance of the solid-state battery at 0.5 A g"'. Reproduced with permission.[125) Copyright 2019, RSC.f) Schematic illustration of the synthesis ofVS2@VOOH microflowers. g,h) HRTEM images ofVS2@VOOH-18 h. i) Schematic illustration for the charge/ discharge process of the VS2@VOOH-18 h and the working mechanism of VOOH coating. Reproduced with permission.

Figure 8. a) Illustration of fabrication procedure of hierarchical rGO-VS2 composites. b) FESEM image and c) HRTEM image of rGO-VS2 composites.d) Rate capability and e) cycling performance of rGO-VS2 and VS electrodes. Reproduced with permission.135) Copyright 2020, Elsevier B.V. f) Illustration of synthesis procedure of VS2@N-C hybrid. g) TEM image of the VS2@N-C hybrid. c) Cycling properties of VS2@N-C hybrid. Reproduced with permission.

Figure 9. a) SEM image and b.c) images of VS2/VO, d) Long-term cycle performance and e) rate capability of VS2/VO2 and VSz electrodes. Reproduced with permission.142) Copyright 2021, Wiley-VCH. f) Schematic illustration of the synthesis of interlayer-expanded flower-like VS2-NHs hollow spheres.g) HRTEM image of VS2-NH3. h) The electrochemical oxidation of VS2-NH3 process and the subsequent Zn2+ storage mechanism. Reproduced with permission.

Figure 10. a) HRTEM image of 1T phase WS2-200. b) CV curves of commercial WS2 and WS2-200 at 0.4 mV s-'. c) Cycling performances at 200 mA g-.Reproduced with permission.1147) Copyright 2022, Elsevier B.V. d) HRTEM image and e) the crystallographic structure of TiSz. f) The calculations of the migration energy of Zn2+ ions. g) The long-term cycling properties of Nao.14TiS2 electrode. h) Structural illustrations and i) cycling performance of aqueous Nao.14TiS2//ZnMnO, Zn-ion full battery. Reproduced with permission.

Figure 11. a) Schematic illustration of the Zn storage in VSe. b) HRTEM image of VSey c) Cycling performance of VSe, at a high current density of 2000 mA g". Reproduced with permission.a Copyright 2020, RSC. d) TEM image of VSe, nanosheets with SAED pattern inserted. e) Long-term cycle test of the Zn//VSez battery. f) Schematic illustration of the two-step Zn2" intercalation/de-intercalation process in VSe; cathode. g) Top view of the optimal diffusion pathway of zinc ion. Reproduced with permission.

Figure 12. a) Schematic of the preparation process of the VSez-x-SS. b) SEM image and c,d) HRTEM images of VSe2-y-SS. e) XPS Se 3d spectra and f) EPR spectra of VSe2-x-SS and VSez-SS. g) Long cycling performance. Reproduced with permission.I53] Copyright 2021, American Chemical Society.h) Schematic representation for the synthesis of rGO-VSez nanohybrid. b) Schematic illustration of Zn storage in rGO-VSez nanohybrid. c) TEM images of rGO-VSez nanohybrid. Reproduced with permission.

Figure 13. a) Schematic illustration of preparation WSe, nano-flower. b) HRTEM image of WSe, material. c) Charge-discharge curves of WSe. Reproduced with permission.18) Copyright 2022, Springer-Verlag. d) The structure and storage mechanism of Tisez. e) Proposed diffusion path of site A to site A and site B to site B. The structure and storage mechanism of f) Tisez//VO: ZIB and g) TiSez//AC ZHSC. h) The migration energy of zinc ions at (e). Reproduced with permission.

Figure 14. a) Lateral (left) and vertical (right) views of the crystalline structure of VS,, b) DFT-calculated relative formation energies for different amounts of Zn2* ion occupation in Zn,VSs cells. c) b values of the different redox peaks. d) Galvanostatic charge and discharge curves of the VS4-Zn battery at different current densities. e) Cycle stability of the VSa-Zn battery. Reproduced with permission. 8) Copyright 2020, RSC. f) Low-mag TEM image of VSs@rGO. g) Cycling performance of VS@rGO at 10 A g-'. Reproduced with permission.

Figure 15. a) Schematic of the fabrication procedure of VsSg. b) Schematic of the fabrication procedure of VsSg. c) The diffusion energy barrier profiles in VsSs. Reproduced with permission.192) Copyright 2021, Elsevier B.V. d) Schematic illustration of the formation of the MnS/RGO composites.Reproduced with permission.193] Copyright 2021, Elsevier Inc. e) Advantages of CoSn.S2 compared with CoSnS and Co,Sn.S2. f) The calculated chemical diffusion coefficients for Zn2+ of Co,Sn2-S2- g) Cycling performance at 1 A g'. h) Long-cycle performance of the Zn//Co,SngS battery at -10 °C. Reproduced with permission.







【总结与展望】

总之,可充电水系ZIBs因其安全可靠、环境友好、成本低廉、容量大而在储能领域引起了极大的关注。然而,离子/电子传输动力学、活性物质溶解和不可逆的结构变化阻碍了水性ZIBs的进一步发展。因此,探索合适的正极材料是Zn2+离子可逆嵌入的关键。通常,在过去的几十年中,五种主要类型的电极材料被用于ZIBs,包括锰基氧化物、钒基氧化物、普鲁士蓝类似物、有机化合物和聚阴离子化合物。特别地,具有典型2D层状结构的层状过渡金属硫化物和硒化物作为用于含水ZIBs主体阴极的被忽略的类型材料,由于其对于可逆Zn2+插入/提取的可调层间距、对于大容量的大量边缘位点和硫空位、以及对于快速离子转移的S2-的高极化率,已经被认为是有前途的材料。尽管如此,过渡金属硫化物和硒化物仍然存在低可逆容量和快速容量衰减的挑战。在本综述中,对过渡金属硫化物和硒化物阴极进行了总结和讨论,包括过渡金属二硫化物(MoS2、VS2、WS2、TiS2)、过渡金属二硒化物(VSe2、Wse2、TiSe2)和其他过渡金属硫化物/硒化物(VSe4、V5S8、MnS、MoS3、Ni2Se3、Co3Sn2S2)。为了降低Zn2+的扩散能垒,改善过渡金属硫化物和硒化物阴极的电化学性能,本文综述了如下几种修饰策略。I)相工程,控制从2H到1T相的可逆相变,以降低Zn2+的扩散能垒,并进一步提高结构稳定性;ii)缺陷工程,提供大量的离子存储位置和利用框架化学缺陷的活性位置;iii)层间插层,通过客体离子和分子的插层扩大夹层以改善Zn2+的可逆插入/提取;iv)原位电化学氧化,实现动力学高价活性物质,而不改变离子在夹层中的位置;v)杂化,通过与碳基材料或其他材料的杂化,增强电子/离子导电性,提高复合材料的结构稳定性;vi)掺杂效应,通过杂原子掺杂改善电子导电性,扩大层间距,并增强活性材料的亲水性;vii)表面改性,解决钒在水性电解质中的溶解和渗透不足问题,以进一步开发VS2基正极材料在水系ZIBs中的应用。表6总结了通过各种改性策略得到的过渡金属硫化物和硒化物正极的电化学性质。许多过渡金属硫化物和硒化物在经过相应的修饰策略后,对Zn2+表现出了突出的电化学性质,然而,这些修饰策略仅在部分过渡金属硫化物和硒化物中得到初步验证。为了进一步推动这些修饰策略在水系ZIBs实际应用中的蓬勃发展,作者提出了如下一些关键的突破方向和途径。
1)加强机理探索技术 2)加强各种修饰策略之间的协同工程 3)开发高压正极材料 4)探索多元化的电解液策略 5)延伸到高容量转换型正极材料 6)开发摇椅式锌离子电池





文献获取方式:添加小编微信,发送推文日期及期刊名即可获得。


球差电镜 | 有限元模拟 | 理论计算

原位XRD、原位Raman、原位FTIR、原位TEM

加急测试

刘老师

研图汇技术经理

182 6975 5918




点击【阅读原文】跳转至文章下载页面。

推荐阅读:
1. 气固相原位红外测试;
2. 原位XRD与原位Raman测试;
3. 变温原位XRD测试;
4. 变角度XPS测试;
5. 电池原位光学显微镜测试
6. 环境球差电镜测试;
7. 电池充放电原位红外测试。
8. 原位(电化学)拉曼测试


2-

相关阅读

  • 研图汇 | 分子动力学

  • 一、基本原理分子动力学模拟将体系中的每个原子视为遵守牛顿第二定律的粒子,根据分子的势能函数,得到作用在每个原子上的力,给定初速度和演化的步长,利用牛顿运动定律求解运动方
  • 研图汇 | 近期科研绘图案例展示

  • 耐心交流,用心制作,绘图就选研图汇【近期科研封面展示】01020304050607080910111213141516更多科研绘图,敬请关注“研图汇”微信公众号!联系方式:一对一咨询刘老师研图汇技术经理
  • 王春生教授,最新Joule!

  • 【做计算 找华算】理论计算助攻顶刊,10000+成功案例,全职海归技术团队、正版商业软件版权!经费预存选华算,高至15%预存增值!随着传统的层状过渡金属氧化物正极接近其理论容量极限
  • 诚邀同步辐射、原位、电镜测试工程师入驻合作

  • 华算科技招聘兼职合作技术工程师一、岗位职责和任职要求有同步辐射、原位测试、电镜等测试中的一种或多种测试能力二、待遇待遇:报酬丰厚,具体详谈简历投递邮箱:kefu@v-suan.co

热门文章

  • “复活”半年后 京东拍拍二手杀入公益事业

  • 京东拍拍二手“复活”半年后,杀入公益事业,试图让企业捐的赠品、家庭闲置品变成实实在在的“爱心”。 把“闲置品”变爱心 6月12日,“益心一益·守护梦想每一步”2018年四

最新文章

  • 研图汇 | 分子动力学

  • 一、基本原理分子动力学模拟将体系中的每个原子视为遵守牛顿第二定律的粒子,根据分子的势能函数,得到作用在每个原子上的力,给定初速度和演化的步长,利用牛顿运动定律求解运动方
  • 研图汇 | 近期科研绘图案例展示

  • 耐心交流,用心制作,绘图就选研图汇【近期科研封面展示】01020304050607080910111213141516更多科研绘图,敬请关注“研图汇”微信公众号!联系方式:一对一咨询刘老师研图汇技术经理
  • 奇联赏析:一联嵌入广州八条街名

  • 从前广州有一副以街名作成的对联,一副对联嵌入广州八条街名,十分有趣。此联嵌入街名,以拟人化形式表述,朗朗上口,易于记忆,今天读来,让人感受到广州街巷的沧桑变化。你知道哪八条街