服务粉丝

我们一直在努力
当前位置:首页 > 财经 >

8种 专坑 同事的SQL写法,来试试吧

日期: 来源:终码一生收集编辑:康熙
点击“终码一生”,关注,置顶公众号
每日技术干货,第一时间送达!

耗时8个月联合打造 《 2023年Java高薪课程 》,更新了 102G 视频累计更新时长 500+ 个小时,需要的小伙伴可以了解下,一次购买,持续更新,无需2次付费。


今天给大家分享几个SQL常见的“坏毛病”及优化技巧。

SQL语句的执行顺序:


1、LIMIT 语句




分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。

SELECT *
FROM   operation
WHERE  type = 'SQLStats'
       AND name = 'SlowLog'
ORDER  BY create_time
LIMIT  1000, 10;

好吧,可能90%以上的 DBA 解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。

在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下:

SELECT   *
FROM     operation
WHERE   type = 'SQLStats'
AND     name = 'SlowLog'
AND     create_time > '2017-03-16 14:00:00'
ORDER BY create_time limit 10;

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。


2、隐式转换




SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:

mysql> explain extended SELECT *
     > FROM   my_balance b
     > WHERE b.bpn = 14000000123
     >       AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'

其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。


3、关联更新、删除




虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。

比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。

UPDATE operation o
SET   status = 'applying'
WHERE  o.id IN (SELECT id
               FROM   (SELECT o.id,
                               o.status
                       FROM   operation o
                       WHERE  o.group = 123
                               AND o.status NOT IN ( 'done' )
                       ORDER  BY o.parent,
                                 o.id
                       LIMIT  1) t);

执行计划:

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| id | select_type       | table | type | possible_keys | key     | key_len | ref   | rows | Extra                                               |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| 1  | PRIMARY           | o     | index |               | PRIMARY | 8       |       | 24   | Using where; Using temporary                       |
| 2 | DEPENDENT SUBQUERY |       |       |               |         |         |       |     | Impossible WHERE noticed after reading const tables |
| 3  | DERIVED           | o     | ref   | idx_2,idx_5   | idx_5   | 8       | const | 1   | Using where; Using filesort                         |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒。

UPDATE operation o
       JOIN  (SELECT o.id,
                           o.status
                     FROM   operation o
                     WHERE  o.group = 123
                           AND o.status NOT IN ( 'done' )
                     ORDER  BY o.parent,
                               o.id
                     LIMIT  1) t
         ON o.id = t.id
SET   status = 'applying'

执行计划简化为:

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key   | key_len | ref   | rows | Extra                                               |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| 1  | PRIMARY     |       |     |               |       |         |       |     | Impossible WHERE noticed after reading const tables |
| 2 | DERIVED     | o     | ref | idx_2,idx_5   | idx_5 | 8       | const | 1   | Using where; Using filesort                         |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+


4、混合排序




MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

SELECT *
FROM   my_order o
       INNER JOIN my_appraise a ON a.orderid = o.id
ORDER  BY a.is_reply ASC,
         a.appraise_time DESC
LIMIT  0, 20

执行计划显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort |
|  1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122     | a.orderid |       1 | NULL |
+----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+

由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

SELECT *
FROM   ((SELECT *
         FROM   my_order o
                INNER JOIN my_appraise a
                        ON a.orderid = o.id
                           AND is_reply = 0
         ORDER  BY appraise_time DESC
         LIMIT  0, 20)
        UNION ALL
        (SELECT *
         FROM   my_order o
                INNER JOIN my_appraise a
                        ON a.orderid = o.id
                           AND is_reply = 1
         ORDER  BY appraise_time DESC
         LIMIT  0, 20)) t
ORDER  BY  is_reply ASC,
          appraisetime DESC
LIMIT  20;


5、EXISTS语句




MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:

SELECT *
FROM   my_neighbor n
       LEFT JOIN my_neighbor_apply sra
              ON n.id = sra.neighbor_id
                 AND sra.user_id = 'xxx'
WHERE  n.topic_status < 4
       AND EXISTS(SELECT 1
                  FROM   message_info m
                  WHERE  n.id = m.neighbor_id
                         AND m.inuser = 'xxx')
       AND n.topic_type <> 5

执行计划为:

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
|  1 | PRIMARY | n | ALL |  | NULL | NULL | NULL | 1086041 | Using where |
| 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where |
|  2 | DEPENDENT SUBQUERY | m | ref |  | idx_message_info | 122     | const |       1 | Using index condition; Using where |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

SELECT *
FROM   my_neighbor n
       INNER JOIN message_info m
               ON n.id = m.neighbor_id
                  AND m.inuser = 'xxx'
       LEFT JOIN my_neighbor_apply sra
              ON n.id = sra.neighbor_id
                 AND sra.user_id = 'xxx'
WHERE  n.topic_status < 4
       AND n.topic_type <> 5

新的执行计划:

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
|  1 | SIMPLE | m | ref | | idx_message_info | 122     | const |    1 | Using index condition |
| 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where |
|  1 | SIMPLE | sra | ref | | idx_user_id | 123     | const |    1 | Using where |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+


6、条件下推




外部查询条件不能够下推到复杂的视图或子查询的情况有:

  • 1、聚合子查询;

  • 2、含有 LIMIT 的子查询;

  • 3、UNION 或 UNION ALL 子查询;

  • 4、输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT *
FROM   (SELECT target,
               Count(*)
        FROM   operation
        GROUP  BY target) t
WHERE  target = 'rm-xxxx'
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table      | type  | possible_keys | key         | key_len | ref   | rows | Extra |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| 1 | PRIMARY | <derived2> | ref   | <auto_key0> | <auto_key0> | 514     | const | 2 | Using where |
| 2 | DERIVED | operation | index | idx_4 | idx_4 | 519     | NULL  | 20 | Using index |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

确定从语义上查询条件可以直接下推后,重写如下:

SELECT target,
       Count(*)
FROM   operation
WHERE  target = 'rm-xxxx'
GROUP  BY target

执行计划变为:

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+


7、提前缩小范围




先上初始 SQL 语句:

SELECT *
FROM   my_order o
       LEFT JOIN my_userinfo u
              ON o.uid = u.uid
       LEFT JOIN my_productinfo p
              ON o.pid = p.pid
WHERE  ( o.display = 0 )
       AND ( o.ostaus = 1 )
ORDER  BY o.selltime DESC
LIMIT  0, 15

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
|  1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
|  1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL |      6 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。

SELECT *
FROM (
SELECT *
FROM   my_order o
WHERE  ( o.display = 0 )
       AND ( o.ostaus = 1 )
ORDER  BY o.selltime DESC
LIMIT  0, 15
) o
     LEFT JOIN my_userinfo u
              ON o.uid = u.uid
     LEFT JOIN my_productinfo p
              ON o.pid = p.pid
ORDER BY  o.selltime DESC
limit 0, 15

再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
|  1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL |     15 | Using temporary; Using filesort |
| 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
|  1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL |      6 | Using where; Using join buffer (Block Nested Loop) |
| 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+


8、中间结果集下推




再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT    a.*,
          c.allocated
FROM      (
              SELECT   resourceid
              FROM     my_distribute d
                   WHERE    isdelete = 0
                   AND      cusmanagercode = '1234567'
                   ORDER BY salecode limit 20) a
LEFT JOIN
          (
              SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
              FROM     my_resources
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT    a.*,
          c.allocated
FROM      (
                   SELECT   resourceid
                   FROM     my_distribute d
                   WHERE    isdelete = 0
                   AND      cusmanagercode = '1234567'
                   ORDER BY salecode limit 20) a
LEFT JOIN
          (
                   SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
                   FROM     my_resources r,
                            (
                                     SELECT   resourceid
                                     FROM     my_distribute d
                                     WHERE    isdelete = 0
                                     AND      cusmanagercode = '1234567'
                                     ORDER BY salecode limit 20) a
                   WHERE    r.resourcesid = a.resourcesid
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:

WITH a AS
(
         SELECT   resourceid
         FROM     my_distribute d
         WHERE    isdelete = 0
         AND      cusmanagercode = '1234567'
         ORDER BY salecode limit 20)
SELECT    a.*,
          c.allocated
FROM      a
LEFT JOIN
          (
                   SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
                   FROM     my_resources r,
                            a
                   WHERE    r.resourcesid = a.resourcesid
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid


总结




数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。

上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。

程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。

编写复杂SQL语句要养成使用 WITH 语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 。


文章来源:https://juejin.cn/post/7179231269337694263


—END—

 

【福利】2023 高薪课程,全面来袭(视频+笔记+源码)


【福利】2023 高薪课程,全面来袭(视频+笔记+源码)


PS:防止找不到本篇文章,可以收藏点赞,方便翻阅查找哦。



往期推荐



HTTPS 终于搞懂了 !

丝滑的打包部署,一套带走!

SpringBoot一行代码实现文件上传20个平台!少写代码到极致!

针对 jar 和 vue 的一键自动化部署工具,界面友好,操作简单(已开源)

告别卡顿困扰:IDEA 性能优化设置

美团二面:SPI 的原理是什么?

HikariCP 数据库连接池,太快了!


相关阅读

  • 浅谈Sql注入总结笔记整理(超详细)

  • 一、sql注入概述SQL注入即是指web应用程序对用户输入数据的合法性没有判断或过滤不严,攻击者可以在web应用程序中事先定义好的查询语句的结尾上添加额外的SQL语句,在管理员不
  • uni-app 黑魔法探秘 (一)——重写内置标签

  • 一、背景政采前端团队的移动端跨端解决方案选择的是 uni-app。跨端方案的好处就是一码多端,即书写一次就可以输出到 web、小程序、Anroid、iOS 等各端。既然是开发,那必然少不
  • 对话式AI搜索的技术路线猜想

  • ©作者 | 李忠利单位 | 腾讯研究方向 | 语义理解、文本纠错等ChatGPT 真是火爆全网了,铺天盖地的文章一个接一个。最近我老爹都来问我:“你的工作是不是跟那一串英文字母有关
  • 一次失败的SQL注入经历

  • 目录一次失败的SQL注入经历0x00 前言0x01 WAF识别0x02 篇章: Bypassed 0x2.1 漏洞证明 0x2.2 无限制注入0x03 后续:无疾而终0x04 总结某天,聚合扫描器推送了一份SQL注入的漏
  • 【测试开发】python系列教程:循环语句

  • 上一篇【测试开发】python系列教程:条件控制本次分享循环语句。正文 Python 中的循环语句有 for 和 while。上一张也分享了while语句,while语句也是一个循环语句。
  • 这样写SQL,同事说我坑。。

  • 最近在带大家做新项目,欢迎参与大家好,我是鱼皮。今天给大家分享几个写 SQL 时常见的“坏毛病”及优化技巧。1、LIMIT 语句分页查询是最常用的场景之一,但也通常也是最容易出问
  • 开源 | 携程机票跨端 Kotlin DSL 数据库框架 SQLlin

  • 作者简介禹昂,携程机票移动端资深工程师,专注于 Kotlin 移动端跨平台领域,Kotlin 中文社区核心成员,图书《Kotlin 编程实践》译者。一、背景2022年9月 Kotlin 1.7.20 发布之后,Ko
  • 慢查询应该怎么去合理优化

  • 阿粉昨天把这个怎么把 SQL 是否命中是索引,以及把如何开启开启慢查询的方法已经分享给了大家,接下来我们就得分项一下,我们找到了自己的慢查询的 SQL ,那就应该想办法去优化,怎么
  • 第一章 开始学Excel VBA

  • 导读:谭编准备撰写一本新书《Excel VBA数据处理与绘图》,希望对科研人员有帮助。第一章 开始学Excel VBAVBA即Visual Basic for Applications的缩写。它是古老的Visual Basic

热门文章

  • “复活”半年后 京东拍拍二手杀入公益事业

  • 京东拍拍二手“复活”半年后,杀入公益事业,试图让企业捐的赠品、家庭闲置品变成实实在在的“爱心”。 把“闲置品”变爱心 6月12日,“益心一益·守护梦想每一步”2018年四

最新文章

  • 8种 专坑 同事的SQL写法,来试试吧

  • 点击“终码一生”,关注,置顶公众号每日技术干货,第一时间送达!耗时8个月联合打造 《 2023年Java高薪课程 》,已更新了 102G 视频,累计更新时长 500+ 个小时,需要的小伙伴可以了解下
  • Redis为何这么快?聊聊它的数据结构~

  • 原价199元,现在参加拼团活动立享优惠价仅 99 元,赶快一起参团吧!《基于社区电商场景的Redis缓存架构实战》=== 课程福利 ===为了让更多同学学到赚到,《基于社区电商场景的Redis
  • 如何搭建一台永久运行的个人服务器?

  • 「 关注“石杉的架构笔记”,大厂架构经验倾囊相授 」文章来源:https://segmentfault.com/a/1190000021143144目录一、 树莓派是什么?二、 树莓派zero w安装系统一、树莓派是什
  • 税收与负债,明线与暗线

  • 2023年我国的经济增速预期放出,目标定在5%上。经济增长一方面靠市场自发调配资源,从而增加产出和消费,另一方面则是政府干预,除了制定相关规则之外,往往需要拿出真金白银去刺激经