服务粉丝

我们一直在努力
当前位置:首页 > 财经 >

实战:使用 PyTorch 和 OpenCV 实现实时目标检测系统

日期: 来源:新机器视觉收集编辑:小白

点击下方卡片,关注“新机器视觉”公众号

重磅干货,第一时间送达


一、引言
自动驾驶汽车可能仍然难以理解人类和垃圾桶之间的区别,但这并没有使最先进的物体检测模型在过去十年中取得的惊人进步相去甚远。

将其与 OpenCV 等库的图像处理能力相结合,如今在数小时内构建实时对象检测系统原型要容易得多。在本指南中,我们将尝试向您展示如何开发用于简单对象检测应用程序的子系统,以及如何将所有这些组合在一起。


二、Python与C++

我知道你们中的一些人可能会想,为什么我们要使用Python,在某种程度上,它对于实时应用程序来说不是太慢了吗。

大多数计算重操作,如预测或图像处理,都是通过PyTrand和OpenCV来执行的,它们都使用C++在场景后面实现这些操作,因此,如果我们在这里使用C++或Python,则不会有太大的差别。


三、读取视频流

输入的视频源可以是任何内容,从网络摄像头读取,或解析现有视频,或从连接到网络的外部摄像头。在此示例中,我们将展示如何从 youtube 或网络摄像头读取视频流。


四、从YouTube读取


你们可能不想出去创建新视频,而是使用许多在线可用的视频。在这种情况下,你们可以从 youtube 读取视频流。

import cv2 # opencv2 package for python.import pafy # pafy allows us to read videos from youtube.URL = "https://www.youtube.com/watch?v=dQw4w9WgXcQ" #URL to parseplay = pafy.new(self._URL).streams[-1] #'-1' means read the lowest quality of video.assert play is not None # we want to make sure their is a input to read.stream = cv2.VideoCapture(play.url) #create a opencv video stream.


五、从网络摄像头读取


import cv2stream = cv2.VideoCapture(0) # 0 means read from local camera.


六、读取IP摄像头


如果你们正在构建将部署在服务器上的应用程序,摄像机拥有一个自己的 IP 地址,你可以从中访问视频流。

import cv2camera_ip = "rtsp://username:password@IP/port"stream = cv2.VideoCapture(camera_ip)


七、加载模型


有许多不错的对象检测模型,每个模型都有其优点和缺点。为了简单起见,我们将使用YoloV5,因为它为我们提供了对我们的实时应用程序至关重要的快速应用。你们还可以查看其他模型,例如 FasterRCNN。


我们可以直接从 PyTorch hub 加载模型,第一次运行代码可能需要几分钟,因为它会从互联网上下载模型,但下次它将直接从磁盘加载。

from torch import hub # Hub contains other models like FasterRCNNmodel = torch.hub.load( \                      'ultralytics/yolov5', \                      'yolov5s', \                      pretrained=True)


八、单帧评分


我们可以说“解析一个视频流,从一帧开始”。那么让我们看看如何对单个帧进行评分和解析。我们用来执行应用的设备对我们的应用速度产生了巨大的影响,现代深度学习模型在使用 GPU 时效果最好,因此如果你们有一个带有 CUDA 内核的 GPU,它将大大提高您的性能。根据经验,即使是单个 GPU 的系统也可以达到每秒 45-60 帧,而 CPU 最多只能提供 25-30 帧。

"""The function below identifies the device which is availabe to make the prediction and uses it to load and infer the frame. Once it has results it will extract the labels and cordinates(Along with scores) for each object detected in the frame."""def score_frame(frame, model):    device = 'cuda' if torch.cuda.is_available() else 'cpu'    model.to(device)    frame = [torch.tensor(frame)]    results = self.model(frame)    labels = results.xyxyn[0][:, -1].numpy()    cord = results.xyxyn[0][:, :-1].numpy()    return labels, cord
九、绘制试别对象及框架


一旦我们对帧进行了评分,在将帧写入输出流之前,我们需要在帧上绘制识别的对象及其框。为此,我们可以使用 OpenCV 的图像处理工具包。

"""The function below takes the results and the frame as input and plots boxes over all the objects which have a score higer than our threshold."""def plot_boxes(self, results, frame):    labels, cord = results    n = len(labels)    x_shape, y_shape = frame.shape[1], frame.shape[0]    for i in range(n):        row = cord[i]        # If score is less than 0.2 we avoid making a prediction.        if row[4] < 0.2:             continue        x1 = int(row[0]*x_shape)        y1 = int(row[1]*y_shape)        x2 = int(row[2]*x_shape)        y2 = int(row[3]*y_shape)        bgr = (0, 255, 0) # color of the box        classes = self.model.names # Get the name of label index        label_font = cv2.FONT_HERSHEY_SIMPLEX #Font for the label.        cv2.rectangle(frame, \                      (x1, y1), (x2, y2), \                       bgr, 2) #Plot the boxes        cv2.putText(frame,\                    classes[labels[i]], \                    (x1, y1), \                    label_font, 0.9, bgr, 2) #Put a label over box.        return frame


十、输出




十一、整合


现在我们将它们整合到一个调用函数中,在循环中执行整个操作,让我们回顾一下我们的主要功能必须执行以成功运行应用程序的步骤。

  1. 创建视频流输入。
  2. 加载模型。
  3. 当输入可用时,阅读下一帧。
  4. 对框架进行评分以获取标签和坐标。
  5. 在检测到的对象上绘制框。
  6. 将处理后的帧写入输出视频流。
"""The Function below oracestrates the entire operation and performs the real-time parsing for video stream."""def __call__(self):    player = self.get_video_stream() #Get your video stream.    assert player.isOpened() # Make sure that their is a stream.     #Below code creates a new video writer object to write our    #output stream.    x_shape = int(player.get(cv2.CAP_PROP_FRAME_WIDTH))    y_shape = int(player.get(cv2.CAP_PROP_FRAME_HEIGHT))    four_cc = cv2.VideoWriter_fourcc(*"MJPG") #Using MJPEG codex    out = cv2.VideoWriter(out_file, four_cc, 20, \                          (x_shape, y_shape))     ret, frame = player.read() # Read the first frame.    while rect: # Run until stream is out of frames        start_time = time() # We would like to measure the FPS.        results = self.score_frame(frame) # Score the Frame        frame = self.plot_boxes(results, frame) # Plot the boxes.        end_time = time()        fps = 1/np.round(end_time - start_time, 3) #Measure the FPS.        print(f"Frames Per Second : {fps}")        out.write(frame) # Write the frame onto the output.        ret, frame = player.read() # Read next frame.

你们应该将所有这些组件打包到一个类中,该类可以与你们希望将输出流写入其中的 URL 和输出文件一起调用。最终效果如下:


十二、结论

当然,生产级实时应用程序比这复杂得多,但本文并不打算教授这一点。它是为了展示 Python 的惊人力量,它使我们能够在数小时内构建如此复杂的应用程序原型。

Github代码链接:https://github.com/akash-agni


声明:部分内容来源于网络,仅供读者学习、交流之目的。文章版权归原作者所有。如有不妥,请联系删除。

—THE END—

相关阅读

  • 短短一个月,打工人的饭碗都快被AI砸干净了

  • 嗨呀大家吼!这里是IT之家,我是浪歌!短短一个月,AI 已经把整个人类社会的分工搅了个天翻地覆了。先是 Midjourney V5 的推出,直接能用几句话生成一副以假乱真的图片。图源 Midjour
  • 龚文祥:数字人直播的几个内部消息,提醒大家

  • 提醒大家我今天通过朋友沟通,提醒大家的是:1、官方只支持高质量的数字人。那些低价格80元一个数字人,如通过抠图实现的纸片数字人,系统一律封杀。所以,随便让你发张照片及视频,就
  • 让人受益终生的10个顶级思维模型

  • ▲ 点击上方蓝字“晏涛三寿”关注公众号回复“热点”领取《2023全年营销热点》2434字 | 4分钟阅读编辑|吴桐思维模型是指一种系统化的、有条理的思维方式。不过,任何一个思维

热门文章

  • “复活”半年后 京东拍拍二手杀入公益事业

  • 京东拍拍二手“复活”半年后,杀入公益事业,试图让企业捐的赠品、家庭闲置品变成实实在在的“爱心”。 把“闲置品”变爱心 6月12日,“益心一益·守护梦想每一步”2018年四

最新文章

  • 纠正孩子啃指甲,需要以「毒」攻毒么?

  • 大家好,我是毛爸。我家儿子最近经常啃指甲和肉刺,所以领导下了命令,让我研究下电商平台热卖的苦甲水这一类产品,看看能否帮助改善孩子的这个不良习惯:为研究这类产品,前短时间我还
  • “比起加息,美联储降息更可怕!”

  • “欧美银行的危机是不是已经过了?”“没有。”“美国经济是否进入衰退?”“很快。”“港股市场当前的估值是否已经到位?”“还是很便宜。”“在港股市场你最看好的投资领域是什
  • 实战:使用 PyTorch 和 OpenCV 实现实时目标检测系统

  • 点击下方卡片,关注“新机器视觉”公众号重磅干货,第一时间送达一、引言自动驾驶汽车可能仍然难以理解人类和垃圾桶之间的区别,但这并没有使最先进的物体检测模型在过去十年中取