文章来源:酷玩实验室 2022-10-12
在社会上有很多声音,说钠电池的出现就是要替代锂电池,来“干死”锂电池的。很多人不知道的是,中国最早支持搞钠电池研发的人,是中国的“锂电第一人”陈立泉院士。
中国最早实现钠电池大规模量产的企业中科海钠,两位创始人胡勇胜、唐堃都是陈院士的嫡传弟子。
01、吾师爱真“锂”
陈立泉院士对钠电池的关注,恰恰来自于他对锂电池特性的深刻理解。
从20世纪60年代开始,陈立泉就在中科院从事电池研究工作,中国第一块锂电池就来自中科院物理所。1976~1978年,中科院派陈立泉到德国的马克斯·普朗克协会的固体所进修,陈立泉发现在马普固体所里,不管是搞理论研究的,还是搞实验的人,全都在研究一种无机材料——氮化锂,认为这种材料未来有望用在汽车电池上。
当时固体所有个对外开放日活动,陈立泉看到研究人员展示了一颗纽扣大小的锂电池,竟然比旁边大块头铅酸电池的能量还要大。
陈立泉回想起自己初中的时候,为了做物理实验,从南充市买了一块铅酸电池背回学校,道路崎岖难走,电池里的溶液不慎泄露,把搬运工的衣服都给烧坏了。所以能量密度更大的锂电池激发了他极大的研究兴趣。
1976年,他向中科院申请转攻研究方向,院里同意了。他花5个月完成了导师留下的生长晶体研究任务,马上转去做超离子导体研究,一转就是30多年。超离子导体就是与锂电池相关的固体离子学研究。
但是他1978年回国以后发现,实验室没有相关的设备,他那点科研经费也不够买新设备,他就只能跑到中科院物理所的北院去借设备,搬到自己实验室,用完再搬回去。
在艰难的研究环境中,他凭着执着的精神,在1987年中国的第一个“863”计划中成为固态锂电池专题的负责人,这个项目为整个中国锂电池产业的科学技术奠定了基础。
就在陈立泉着手研究锂电池的时候,国际上已经同步开展了锂电池和钠电池的研究工作。早在20世纪70年代,由于中东战争引发了石油危机,电池相关的基础研究就已经开始。但是此后由于石油危机解除,电池相关的研究就不再成为学术界关注的热点。
不光是钠电池,包括锂电池也经历了近10年的“被边缘化”,陈立泉没有放弃,而是坚持选择锂电池作为主攻方向。
到20世纪90年代初,日本消费电子产业兴起,索尼公司通过“钴酸锂+石墨”的技术路线成功将锂电池推向了20世纪商业化的巅峰,锂电池循环寿命达到钠电池的10倍左右,导致钠电池又被打入冷宫,从此少人问津。
到1997年,陈院士开始探索锂电池产业化发展的道路,带领团队建设了中国第一条锂电池中试生产线,也就是从实验室到大规模量产之间最重要的一个产业化环节。他在这条线上又当科学家,又当工程师,又当一线工人。
有一次他带着几个人去搬设备,结果拉设备的粗钢绳突然断裂,几吨重的设备顺着楼梯滑下去,幸好跑偏了方向撞在墙上,所有科研人员一起扑过去用力顶住,才没有造成事故。通过这个中试线项目,陈院士摸清了锂电生产的每一个环节。
2000年,中国启动十五“863”计划电动汽车重点专项,当时中国正在大力开发氢镍电池,结果这个专项中锂电池被排除在外。陈院士内心十分焦灼,他鼓足勇气去拜见了万钢:“希望你能给锂电池一个机会。”
经过他的不断劝说和游说,万钢考察了中国锂电池的研究能力,最终采纳了他的意见,把车用锂电池纳入到电动汽车的课题当中。陈院士说:“感谢万钢,当时这个机会太宝贵了。”
但在之后的十年当中,陈院士不再在锂电池方向上“孤注一掷”,而是开始了不同技术路线的深入探索。
他把希望寄托在了一个年轻人的身上。
02、弟子“钠”些事儿
2001年,一个叫胡勇胜的学生来到中科院物理所报道,随后他成为陈立泉院士门下的一名博士生,攻读固态电池方向。
胡勇胜博士毕业以后,陈院士给他写了一封推荐信,让他到德国马克斯·普朗克固体研究所继续深造,随后胡勇胜又前往美国加州大学圣芭芭拉分校做了博士后。
然而长期海外留学的经历没有挡住他归国的脚步。2009年胡勇胜博士后出站以后,陈院士邀请他回到中科院物理所来工作。胡勇胜说当时他“毫不犹豫”,因为“陈老师心系国家能源安全,从长远出发推动电动中国梦想的实现,这种精神让我敬佩”。
面对如日中天的锂电池研究,胡勇胜把主要精力放在了冷门的钠电池上,他说:“如果大家都在观望一个领域,它可能是机会;如果大家都已经开始做了,可能就不是机会了。”
2010年左右,当时一些经济学家和科学家预见了锂资源短缺的问题,各国开始重启钠电池研发。2011年,英国Faradion公司成立,这是全球第一家从事钠电池工程化研究的企业。
但回到国内,胡勇胜听到最多的声音就是:“钠电池能量密度低,有必要投入大量经费和人力去研发吗?”陈立泉院士坚定支持他。中科院物理所给予了充足的科研经费,同时规定新入所的研究院6年内都不用接受任何考核,工资是年薪制。
胡勇胜回国当年,物理所废止了论文奖励办法,不再像过去一样把论文看做唯一评价标准。用陈立泉的话说:“好文章不一定有好技术,好技术不一定有好产品,好产品不一定有好市场。”
物理所副所长胡江平则直言:“就是以‘成果’论英雄。考核不数文章、不看影响因子、不看经费数量,而是重视成果质量和价值,看是不是做到了国际前沿、是不是解决了重要学术难题、是不是具有重大原创性突破、是不是符合国家发展战略需求。”
在这样的学术氛围中,胡勇胜团队可以心无旁骛地进行钻研。由于物理所提倡百花齐放,所以不同研究领域、不同学术地位的科研人员,都可以坐在一起喝上一杯咖啡,交流思想,展开学术碰撞,某一个组里的学生可以向物理所任何一个老师请教,老师们也都乐意解答。
2013年,一家全球知名的锂电企业来评估过胡勇胜的技术,结论是并不看好。
“如果失败了呢?”胡勇胜说:“从来没想过这个问题。成与不成,我这辈子只干这一件事!”
历经5年时间,胡勇胜团队研发出低成本的钠电池正负极材料,并申请了专利,电池循环次数达到上千次。他说:“那是一段幸福时光,全身心投入科研,不用为任何事情分心。”他给自己定下的目标就是要给老百姓做能买得起的低成本、高安全的电池。
2015年底到2016年初,碳酸锂价格第一次大涨,业界开始热议新型电池技术路线的储备计划。当时国家领导人来到中科院物理所,强调科技创新要面向“大众创业,万众创新”,要依托“双创”,推动科技成果转化为现实生产力,让科研界的意识出现了转向。也是2015年,《促进科技成果转化法》修订实施,要求提取技术转让取得的净收入,或者技术入股作价的不低于50%用来奖励科研人员。
2016年,胡勇胜他们研发出一款可以实现商业化的低成本钠电池,并完成了中试试验。在这样的背景下,陈立泉院士、胡勇胜和李泓三人决定创办一家企业,将钠电池产业化落地。
但是当时中科院体系内的投资公司国科嘉和,作为他们的天使投资人提出了一个要求:必须找一个拥有产业背景的人全职来做公司的CEO,而不能主要职位全由科学家兼职——因为陈立泉等三人都在物理所任职。他们商量了一下,陈院士想到了他课题组的学生唐堃。
可是唐堃当时已经是国家能源投资集团(前身之一是神华集团)北京低碳清洁能源研究院电池材料部门经理,换句话说,陈院士这是要人家砸了自己在央企的铁饭碗出来创业。
2016年的一天,陈院士带着胡勇胜和李泓,一起请唐堃吃了顿饭,他看出唐堃有所顾虑,对他说:“你不用担心,物理所已经孵化出了三四家创业公司,即便你在这创业失败了,还可以去别的企业继续创业。”最终说服了唐堃加入。
一般来说,科学家创业都是由老师担任董事长,学生担任CEO。但陈院士没有这样做,而是让他们师兄弟分别担任董事长和CEO,整个团队彼此信任,有话直说。胡勇胜负责公司技术和战略,唐堃负责具体运营细节,陈院士担任首席顾问。直到今天,中科院的创业氛围也十分浓厚,师兄弟之间经常互相扶持、鼓励创业。
2017年,中科海钠正式成立,成为国内第一家钠离子电池公司,公司创始人全部来自中科院物理所。当年,他们第一次把锂电池组应用在电动自行车上。
从那时起,胡勇胜不再是一个整天闷在实验室里的科研工作者,而是要作报告、谈合作、找厂家,满世界地跑,他成为了一个“科学企业家”。
2018年,中科海钠成立一年多,就推出了第一辆钠电池低速电动车,坐在小车上试驾的正是陈院士本人。
2019年,他们推出了全球第一座30千瓦/100千瓦时的钠电池储能电站。
2020年,钠电池产品实现量产,电芯产能30万只/月,海外订单第一期10万只。同年胡勇胜课题组的钠电池材料论文发表在了《科学》(Science)杂志上,这是《科学》创刊100多年以来,第一次刊登钠电池领域的文章。
2021年,全球第一座1兆瓦时(能存储1000度电)的钠电池光伏储能系统正式落成。当年中科海钠获得了数亿元的A轮融资,用来搭建年产能2000吨的电池正负极材料产线。
2022年4月,华为哈勃旗下深圳哈勃科技投资合伙企业(有限合伙)投资中科海钠,持股比例约为13.33%。此时中科海钠估值超过50亿元,与2021年3月相比上涨800%以上。
2022年7月,全球第一条1吉瓦时(100万度电)的钠电池规模化量产线正式投产,总规划产能5吉瓦时。项目满产以后,一年可以生产4000万只圆柱钢壳的钠离子电芯,98万只方形铝壳的钠离子电芯。
但是现在锂电池技术已经如此成熟了,生产规模巨大,钠电池真的能够逆袭成王吗?他们到底看中了钠电池什么呢?
03、锂钠双人舞
钠电池最核心的优势,是它可以做到很便宜。它之所以能很便宜,是因为它用到的很多东西都能在我们国内搞定。
对于电池生产企业来说,还有两个好消息:一是储能电芯的生产设备跟动力电池电芯的设备基本通用;二是钠电池的生产设备与工艺流程与锂电池的设备和流程基本一致,互相兼容。中科海钠就用锂电池产线成功生产了8万只钠电池。所以企业切换产品用途、切换技术路线几乎不需要进行额外投资。
在冬天开过电动车的人都知道,低温环境中锂电池的衰减是很明显的,但是钠电池的低温表现远远好于锂电池,在零下20℃的环境里,锂电池容量保持率小于70%,而钠电池可以超过90%,在零下40度钠电池依然可以正常工作。
而且钠电池还支持快充,中科海钠表示12分钟可以充到90%,宁德时代表示常温充电15分钟电量能超过80%,而三元锂电池通过直流快充从20%充到80%需要30分钟,磷酸铁锂需要45分钟。
但是钠离子电池并不是没有缺点,它的能量密度要比锂离子电池低一点,磷酸铁锂电池能量密度在120~180Wh/kg,钠电池为100~150Wh/kg,大约是前者的80%。这就决定了按照目前的技术水平,钠电池还不能率先大规模用在新能源汽车的动力电池和手机这种电子消费品,因为这些使用场景都对能量密度和续航有较高的要求。
而且钠电池在量产前成本达到1.07元/Wh,也就是1070元/度电,比磷酸铁锂电池更高,但是做到大规模量产之后,钠电池材料成本可以降低到0.3~0.4元/Wh的水平,低于各种类型的锂电池。
如果能量密度拼不过,是不是钠电池就没有用武之地了呢?并不是。
钠电池可能率先从两个方向上实现对锂电池的替代:低速交通和规模储能。低速交通包括电动自行车、微型电动车和园区观光车等。比如观光车用钠电池,储存8度电,可以行驶100公里左右。
而更主要的场景是两轮电动车。现在在中国,两轮电动车的保有量已经达到了3.2亿辆,其中锂电池27%,铅酸电池73%。
买过两轮车的人都知道,便宜的车用的是铅酸电池,续航短,回收不好还有污染;想要续航长的,就要买锂电池的,但是价格贵一些。
实现量产以后,钠电池的性价比正好夹在这两种电池中间,而钠电池的循环寿命是铅酸电池的10倍,能量密度是铅酸的3倍,未来将可能率先替代铅酸蓄电池。
2021年,爱玛就与钠创新能源推出了全球第一批钠电池驱动的两轮电动车。据业内人士透露,雅迪正在协助中科海钠厂参与电池的打样。再过几年,可能你的外卖就是小哥骑着钠电池电动车给你送过来的。
而在储能领域,钠电池的市场空间同样非常广阔。
在安全性方面,你或许听说过一些电动车和储能电站中锂电池起火的事故新闻。2011~2021年全球发生的32起储能电站起火爆炸事故中,涉事电站用的全都是锂电池。
而钠电池经过中汽中心的检测,可以在短路、过充、过放、挤压等实验中做到不起火燃烧,钠电池的起始自加热温度达到260℃,高于锂电池的165℃,最大自加热速度也明显比锂电池更低,说明钠电池的热稳定性更好。
中科海钠展示过这样一段视频:如果把锂电池包剪开扔到水里,会发生剧烈的化学反应,但是把一颗满电的钠电池包剪开扔到水里,只会缓缓地冒出气泡来。
未来,储能会是一个比动力电池大得多的市场,也不是锂电池一种就能全部吃下的。
比尔·盖茨在2021年做了一个测算,假设日本遭遇极端天气,导致大范围停电,为了给东京一座城市供电,需要1400万块电池,相当于全球储能电池10年的产能,购买价格超过4000亿元。
所以你就可以想象,如果未来我们要利用风光+储能来扛过这样的“艰难时刻”,全世界对储能的需求得有多大了。唐堃认为,如果按50%的电来自新能源,按10~20%的装机容量配套储能,那将是一个100万亿级的市场。
如果要布设如此大规模的储能设施,同时还要推广数以亿计的电动汽车,单靠锂电池是肯定不行的。未来一定是多种储能技术路线共同开发、共同应用。
中科海钠的执行董事长唐堃说:“我们希望宝贵的锂资源能节约下来,用在消费电子、新能源汽车等对性能要求更高的高端市场当中。”
正是因为看到了这一点,很多原来做锂电池的企业也纷纷入局钠电池,比如锂电巨头宁德时代,在2021年发布了第一款钠电池,能量密度达到当时全球最高水平,计划2023年形成基本产业链,同时还发布了一块锂电池和钠电池混合集成共用的电池,实现二者的取长补短。
有意思的是,宁德时代的老板曾毓群,他的博导也是陈立泉院士。陈院士的两位得意门生将在钠电池产业展开正面竞争。
未来,钠离子电池提升能量密度的长期方向,是从液态电解质进化到半固态电解质,最终实现固态电解质。由于钠电池的理论能量密度有望突破400Wh/kg,也就是2.5公斤一度电的水平,超过目前量产水平的两倍以上。如果未来在这一技术方向上实现突破,或许钠电池还有可能在消费电子和动力电池领域发挥更大的作用,让我们拭目以待。