服务粉丝

我们一直在努力
当前位置:首页 > 财经 >

【赠书】AI安全:技术与实战

日期: 来源:漏洞战争收集编辑:riusksk

编辑推荐

适读人群 :本书适合AI和AI安全领域的研究人员、管理人员,以及需要实战案例辅助学习的广大爱好者阅读。

● 国内首部揭秘AI安全【前沿技术】图书,【腾讯安全朱雀实验室】首著。

● 前沿【攻击方法和原理】分析,原汁原味【实战案例】呈现。

● 全书涵盖6大主题14个实战案例,包括对抗样本攻击、数据投毒攻击、模型后门攻击、预训练模型安全、AI数据隐私窃取、AI应用失控风险等。

● 附赠全书实战代码,作者在线答疑等增值服务。

● 全彩极致印刷,最佳视觉体验。


内容简介

● 本书首先介绍AI与AI安全的发展起源、世界主要经济体的AI发展战略规划,给出AI安全技术发展脉络和框架,并从AI安全实战出发,重点围绕对抗样本、数据投毒、模型后门等攻击技术进行案例剖析和技术讲解;然后对预训练模型中的风险和防御、AI数据隐私窃取攻击技术、AI应用失控的风险和防御进行详细分析,并佐以实战案例和数据;最后对AI安全的未来发展进行展望,探讨AI安全的风险、机遇、发展理念和产业构想。

● 本书适合AI和AI安全领域的研究人员、管理人员,以及需要实战案例辅助学习的广大爱好者阅读。


作者简介

腾讯安全朱雀实验室专注于AI安全技术研究及应用,围绕对抗机器学习、AI模型安全、深伪检测等方面取得了一系列研究成果,议题入选CVPR、ICLR、CanSecWest、HITB、POC、XCon等国内外顶级会议,面向行业发布了业内第一个AI安全威胁风险矩阵,持续聚焦AI在产业应用的安全问题,助力AI安全技术创新。

目录

●第1章 AI安全发展概述●
1.1 AI与安全衍生
1.1.1 AI发展图谱
1.1.2 各国AI发展战略
1.1.3 AI行业标准
1.1.4 AI安全的衍生本质——科林格里奇困境
1.2 AI安全技术发展脉络

●第2章 对抗样本攻击●
2.1 对抗样本攻击的基本原理
2.1.1 形式化定义与理解
2.1.2 对抗样本攻击的分类
2.1.3 对抗样本攻击的常见衡量指标
2.2 对抗样本攻击技巧与攻击思路
2.2.1 白盒攻击算法
2.2.2 黑盒攻击算法
2.3 实战案例:语音、图像、文本识别引擎绕过
2.3.1 语音识别引擎绕过
2.3.2 图像识别引擎绕过
2.3.3 文本识别引擎绕过
2.4 实战案例:物理世界中的对抗样本攻击
2.4.1 目标检测原理
2.4.2 目标检测攻击原理
2.4.3 目标检测攻击实现
2.4.4 攻击效果展示
2.5 案例总结

●第3章 数据投毒攻击●
3.1 数据投毒攻击概念
3.2 数据投毒攻击的基本原理
3.2.1 形式化定义与理解
3.2.2 数据投毒攻击的范围与思路
3.3 数据投毒攻击技术发展
3.3.1 传统数据投毒攻击介绍
3.3.2 数据投毒攻击约束
3.3.3 数据投毒攻击效率优化
3.3.4 数据投毒攻击迁移能力提升
3.4 实战案例:利用数据投毒攻击图像分类模型
3.4.1 案例背景
3.4.2 深度图像分类模型
3.4.3 数据投毒攻击图像分类模型
3.4.4 实验结果
3.5 实战案例:利用投毒日志躲避异常检测系统
3.5.1 案例背景
3.5.2 RNN异常检测系统
3.5.3 投毒方法介绍
3.5.4 实验结果
3.6 案例总结

●第4章 模型后门攻击●
4.1 模型后门概念
4.2 后门攻击种类与原理
4.2.1 投毒式后门攻击
4.2.2 非投毒式后门攻击
4.2.3 其他数据类型的后门攻击
4.3 实战案例:基于数据投毒的模型后门攻击
4.3.1 案例背景
4.3.2 后门攻击案例
4.4 实战案例:供应链攻击
4.4.1 案例背景
4.4.2 解析APK
4.4.3 后门模型训练
4.5 实战案例:基于模型文件神经元修改的模型后门攻击
4.5.1 案例背景
4.5.2 模型文件神经元修改
4.5.3 触发器优化
4.6 案例总结

●第5章 预训练模型安全●
5.1 预训练范式介绍
5.1.1 预训练模型的发展历程
5.1.2 预训练模型的基本原理
5.2 典型风险分析和防御措施
5.2.1 数据风险
5.2.2 敏感内容生成风险
5.2.3 供应链风险
5.2.4 防御策略
5.3 实战案例:隐私数据泄露
5.3.1 实验概况
5.3.2 实验细节
5.3.3 结果分析
5.4 实战案例:敏感内容生成
5.4.1 实验概况
5.4.2 实验细节
5.4.3 结果分析
5.5 实战案例:基于自诊断和自去偏的防御
5.5.1 实验概况
5.5.2 实验细节
5.5.3 结果分析
5.6 案例总结

●第6 章 AI数据隐私窃取●
6.1 数据隐私窃取的基本原理
6.1.1 模型训练中数据隐私窃取
6.1.2 模型使用中数据隐私窃取
6.2 数据隐私窃取的种类与攻击思路
6.2.1 数据窃取攻击
6.2.2 成员推理攻击
6.2.3 属性推理攻击
6.3 实战案例:联邦学习中的梯度数据窃取攻击
6.3.1 案例背景
6.3.2 窃取原理介绍
6.3.3 窃取案例
6.3.4 结果分析
6.4 实战案例:利用AI水印对抗隐私泄露
6.4.1 案例背景
6.4.2 AI保护数据隐私案例
6.4.3 AI水印介绍
6.4.4 结果分析
6.5 案例总结

●第7 章 AI应用失控风险●
7.1 AI应用失控
7.1.1 深度伪造技术
7.1.2 深度伪造安全风险
7.2 AI应用失控防御方法
7.2.1 数据集
7.2.2 技术防御
7.2.3 内容溯源
7.2.4 行业实践
7.2.5 面临挑战
7.2.6 未来工作
7.3 实战案例:VoIP电话劫持+语音克隆攻击
7.3.1 案例背景
7.3.2 实验细节
7.4 实战案例:深度伪造鉴别
7.4.1 案例背景
7.4.2 实验细节
7.4.3 结果分析
7.5 案例总结
●后记 AI安全发展展望●

=== 抽奖活动 ===

抽奖送3名粉丝各1本《AI安全:技术与实战》

开奖时间:11月6日18:00


相关阅读

  • 一些复盘数据

  • 更新一些平常追踪的数据。 市场表现近期市场表现来看,明显代表价值的上证指数和消费的沪深300表现比较好,另外港股的表现是最好的,港股和国内的经济基本面比较相关,主要还是FK政
  • B端设计-表格数据过滤

  • 表格被公认为是展现结构化数据最为清晰、高效的形式,除了表格本身的结构,我们需要提供贴合场景的数据过滤方式,辅助用户快速查询定位数据。如何设计一个好的表格数据过滤体验,本
  • 运营设计的那些思考与技巧

  • 早期的设计主要靠感觉和审美,慢慢的设计越来越讲究方法论和心理学,以后还可以再加一种,那就是依靠数据,它将让每个人都能获益。本文将从什么是好的运营设计出发分析运营设计师如
  • 发现有趣的人机交互 004期

  • 1.分享一个笔者认为很不错的插件,跟ChatGPT有关,它可以极高效率地帮你完成在浏览器内的输入或搜索任务。https://merlin.foyer.work/2.分享一个在YouTube上播放500万次的视频,
  • 今夜,所谓利好的背后!

  • 作者/玛玛开篇,祝我们伟大的祖国母亲永远繁荣富强!在祖国的庇佑下,炒炒股,理理财,把自己的小日子越过越好。动笔时间,22:22。今晚的信贷、社融数据一出,全网又开始打鸡血了,标题党们
  • 分库分表后,如何保证数据一致性?

  • 来自:掘金,作者:小泥洼链接:https://juejin.cn/post/6933003178661462023前言通过对数据的垂直拆分或水平拆分后,我们解决了数据库容量、性能等问题,但是将会面临数据迁移和数据一

热门文章

  • “复活”半年后 京东拍拍二手杀入公益事业

  • 京东拍拍二手“复活”半年后,杀入公益事业,试图让企业捐的赠品、家庭闲置品变成实实在在的“爱心”。 把“闲置品”变爱心 6月12日,“益心一益·守护梦想每一步”2018年四

最新文章

  • 【赠书】AI安全:技术与实战

  • 编辑推荐适读人群 :本书适合AI和AI安全领域的研究人员、管理人员,以及需要实战案例辅助学习的广大爱好者阅读。● 国内首部揭秘AI安全【前沿技术】图书,【腾讯安全朱雀实验室】
  • 2022年终书单推荐

  • 2022年共读完了59本书,比往年多不少,主要得益于微信读书,多平台随时随地阅读,确实方便许多。记得大学5年间,读完的计算机书也就50+本,当时网购常常得半月之久才能收到。随着互联网
  • 对于新冠,最后再说点什么

  • 经过三年的防疫,和近一周的抗疫,对我而言,新冠算是告一段落了,几个月内,基本不用再担心和新冠相关的事务。是的,居住在北京的筒子们都知道,这两周要是还没有阳,那已经是少数派。我作
  • 【赠书】Ghidra权威指南

  • 对于抽奖赠书的文章内容,我一向尽量精简。相信对于大多数人而言,更多是一种新书资讯,知道主题和目录即可,反正我平时挑书买书差不多如此。关于逆向工具,相信大家会首选IDA,但它售
  • 2022年攀爬的个人总结

  • 2022年是非常混乱与糟糕的一年,国家是如此,我个人也是如此。首先是父亲去世前,交代给我的三件大事,一件也没有办好。妈妈的眼睛近乎失明,虽然六月初到北京同仁医院换了左眼的角膜