服务粉丝

我们一直在努力
当前位置:首页 > 财经 >

锂固体电解质电导率:机器学习的数据库

日期: 来源:计算材料学收集编辑:编辑概述

转载自公众平台:npj计算材料学

本文以传播知识为目的,如有侵权请后台联系我们,我们将在第一时间删除。

能源储存是通过利用可再生能源来满足日益增长的能源需求的关键技术。液态电解质基锂离子电池已被广泛应用于便携式电子和电动汽车市场,而使用固态电解质的替代电池可以避免与有机液态基电解质相关的安全问题,并通过使用锂金属阳极来提供高能量密度。

Fig. 1 Distribution in room temperature conductivities for materials in the dataset.

然而,采用固态电解质的最大障碍是寻找具备特殊性能的固态材料,包括足够高离子电导率、对锂金属和氧化阴极材料稳定性以及适配的机械性能。目前已有大量的研究致力于发现和开发满足这些要求的固态电解质。最近,人们也开始使用已有的数据去训练机器学习模型,通过材料的成分来预测材料的离子导电性能。

Fig. 2 Distribution of room temperature conductivities across expert-curated structural families.

但这种方法受到了可用于训练模型数据质量和数量的限制。虽然自然语言处理任务可以访问数十亿个训练示例,但在实验材料科学中,即使是大型数据集也通常包含不到10,000个条目。由于这些训练集相对较小,必须使用最高质量的数据来避免向预测模型提供不准确的数据,但目前还没有大型的实验离子电导率数据库供人们进行机器学习研究。

Fig. 3 An embedding of the 127,638 unique compositions (grey) from the ICSD database (2021) with respect to ElMD similarity between compounds, embedded to 2 principle axes with PCA.

来自英国利物浦大学化学系的Cameron J. Hargreaves等人,构建了一个用于机器学习模型的锂固态电解质数据集,实现了基于成分的锂离子电导率预测。该数据集有从214个来源收集的820个条目;条目包含化学成分、专家指定的结构标签和特定温度下的离子电导率,其中403个化学成分具有接近室温的离子电导率。

Fig. 4 Embeddings of the 403 unique room temperature solid state electrolytes compositional data.

作者利用无监督嵌入和聚类技术,根据成分相似度将数据集划分为9个族,从而评估了数据集的多样性。监督统计(AutoSklearn)和深度学习(CrabNet)模型被应用于该数据集,实现了仅从元素成分来预测材料的离子电导率。

Fig. 5 Parity plots and error distribution for two control studies.
在不同的交叉验证机制下,作者用标准的统计指标对回归和分类模型进行了评估,特别是模型在预测新材料离子电导率方面的性能。他们发现,具有迁移学习的Crabnet在不同交叉验证下都表现出了最好的性能。这种分类器是一个实用的工具,可帮助实验人员确定优先考虑的候选锂离子导体以进行未来研究。该文近期发布于npj Computational Materials 9: 9 (2023).

Fig. 6 Parity plots and error distributions for three regression models.

Editorial Summary

Lithium solid electrolyte conductivities: A database for machine learning

Energy storage is a key technology to meet growing energy demand by harnessing renewable sources. Liquid electrolyte-based lithium ion batteries have been extensively deployed in the portable electronic and electric vehicle markets. Alternative batteries that utilize solid state electrolytes (SSEs) avoid the safety issues associated with organic liquid electrolytes and offer high energy density by enabling the use of a lithium metal anode. The most significant obstacle to the adoption of SSEs is the realization of solid-state materials with the full suite of required properties, including sufficiently high ionic conductivity, stability against both lithium metal and the oxidizing cathode material together with appropriate mechanical properties. As such, considerable research has been devoted to the discovery and development of SSEs that meet these requirements. Recent works have used previously published data to train machine learning models and predict the ionic conductivity performance of materials using only their composition. However, this approach is limited by the quality and quantity of the data available to train models. While natural language processing tasks have access to billions of training examples, in experimental materials science even large datasets typically contain fewer than 10,000 entries. Due to these comparatively small training sets, it is imperative that the highest quality data are used to avoid providing inaccurate data to predictive models. But there are no large repositories of experimental ionic conductivities currently available for solid lithium ion conductors to perform a machine learning investigation. 

Cameron J. Hargreaves et al. from the Department of Chemistry, University of Liverpool, built a dataset of lithium SSEs for machine learning models to predict lithium ion conductivity based on composition. This dataset has 820 entries collected from 214 sources; entries contain a chemical composition, an expert-assigned structural label, and ionic conductivity at a specific temperature, with 403 unique compositions with an associated ionic conductivity near room temperature. Unsupervised embedding and clustering techniques were used to partition this dataset into nine families by compositional similarity, thus assessing the diversity of the dataset. Supervised statistical (AutoSklearn) and deep learning (CrabNet) models were applied to this dataset to predict the ionic conductivity of a material from its elemental composition alone. Regression and classification models were evaluated with standard statistical metrics under different cross-validation regimes to assess their performance at predicting the ionic conductivities of novel materials. The results showed that CrabNets with transfer learning demonstrate the best performance under both k-folds and LOCO cross-validation. This classifier is a practical tool to aid experimentalists in prioritizing candidates for further investigation as lithium ion conductors. This article was recently published in npj Computational Materials 9: 9 (2023).

原文Abstract及其翻译

A database of experimentally measured lithium solid electrolyte conductivities evaluated with machine learning (用机器学习评估实验测量的锂固体电解质电导率的数据库)
Cameron J. Hargreaves,   Michael W. Gaultois,   Luke M. Daniels,  Emma J. Watts,  Vitaliy A. Kurlin,   Michael Moran,  Yun Dang,  Rhun Morris,  Alexandra Morscher,  Kate Thompson,  Matthew A. Wright,   Beluvalli-Eshwarappa Prasad,   Frédéric Blanc,  Chris M. Collins,   Catriona A. Crawford,  Benjamin B. Duff,   Jae Evans,  Jacinthe Gamon,  Guopeng Han,  Bernhard T. Leube,   Hongjun Niu,  Arnaud J. Perez,   Aris Robinson,  Oliver Rogan,  Paul M. Sharp,  Elvis Shoko,  Manel Sonni,  William J. Thomas,   Andrij Vasylenko,Lu Wang,  Matthew J. Rosseinsky &   Matthew S. Dyer

Abstract The application of machine learning models to predict material properties is determined by the availability of high-quality data. We present an expert-curated dataset of lithium ion conductors and associated lithium ion conductivities measured by a.c. impedance spectroscopy. This dataset has 820 entries collected from 214 sources; entries contain a chemical composition, an expert-assigned structural label, and ionic conductivity at a specific temperature (from 5 to 873 °C). There are 403 unique chemical compositions with an associated ionic conductivity near room temperature (15–35 °C). The materials contained in this dataset are placed in the context of compounds reported in the Inorganic Crystal Structure Database with unsupervised machine learning and the Element Movers Distance. This dataset is used to train a CrabNet-based classifier to estimate whether a chemical composition has high or low ionic conductivity. This classifier is a practical tool to aid experimentalists in prioritizing candidates for further investigation as lithium ion conductors.

摘要 机器学习模型在预测材料性能方面的应用取决于高质量数据的可用性。我们提出了一个专家策划的数据集,包含锂离子导体及与其相关的由交流阻抗谱测量获得的锂离子电导率。该数据集有来自214个来源的820个条目;条目包含化学成分、专家指定的结构标签,以及特定温度(从5到873°C)下的离子电导率。在室温(15-35°C)附近,有403种独特的化学成分具有相关的离子电导率。数据集中包含的材料在无机晶体结构数据库报告的化合物中,具有无监督机器学习和元素移动距离。该数据集用于训练基于CrabNet的分类器,以估计化学成分是否具有高或低的离子电导率。这种分类器是一个实用的工具,可以帮助实验人员确定优先考虑的候选锂离子导体以进行未来研究。

相关阅读

  • 【转载】华艺学术文献库台港书展

  • 《世界阅读日》台港书展在数位科技发达的世代,无论是工作、课业,甚至是休闲娱乐,生活步调都比过往更为紧凑,我们有多久没有好好坐下来,全心投入在书本世界了呢?联合国教科文组织在
  • 如何让数据产生更多价值 联合国这场大会告诉你

  • 潮新闻 记者 郑亚丽“数据是一种更好的决策方式”“数据是一种新的电力系统”“数据是一种力量”……4月26日,第四届联合国世界数据论坛上,与会嘉宾围绕数据的价值和挖掘展开
  • 我国首个抽水蓄能人工智能数据平台投用

  • 记者从南方电网了解到,今天(4月26日),我国自主研发的首个大规模抽水蓄能人工智能数据分析平台在广州正式投入使用,标志着全国近四分之一装机容量的抽水蓄能设备由传统人工管理向
  • 浙江知识产权发展综合指数稳居全国第一方阵

  • 4月26日是第23个世界知识产权日。在今天举行的浙江“4·26知识产权日”主题活动上,省知识产权强省建设工作联席会议办公室发布了《2022年浙江省知识产权保护与发展状况》。20
  • 2023年这样建设智慧日照!

  • 4月26日上午,市新闻办召开“‘数字城市·智慧日照’数字强市建设”主题系列发布会(第一场),介绍《日照市数字强市2023年行动计划》有关情况。《日照市数字强市2023年行动计划》
  • 浙江将免费提供数据知识产权登记公共服务

  • 潮新闻 记者 全琳珉 通讯员 彭桦继开发上线数据知识产权公共存证平台之后,4月26日,浙江正式上线“浙江省数据知识产权登记平台”(以下简称“登记平台”)。该数字化应用为“浙江
  • 云思智学刘渝:数据是教育数字化转型的基础

  • 4月21日,第81届中国教育装备展示会在南昌启幕。同期,第三届教育装备学术大会——教育数字化创新应用发展高峰论坛成功举办。作业帮旗下教育数字化综合服务商云思智学CEO刘渝出

热门文章

  • “复活”半年后 京东拍拍二手杀入公益事业

  • 京东拍拍二手“复活”半年后,杀入公益事业,试图让企业捐的赠品、家庭闲置品变成实实在在的“爱心”。 把“闲置品”变爱心 6月12日,“益心一益·守护梦想每一步”2018年四
  • 美国对华2000亿关税清单,到底影响有多大?

  • 1 今天A股大跌,上证最大跌幅超过2%。直接导火索是美国证实计划对华2000亿美元产品加征25%关税。 听起来,2000亿美元数目巨大,我们来算笔账。 2000亿美元,按现在人民币汇率

最新文章

  • 审稿人要求论文添加计算内容,这该怎么加?

  • 催化实验中一些重要的结果包括催化剂构型(XANES、EXAFS)、反应电位(起始电位、半波电位、过电位)、拉曼光谱(中间体振动模式)等对DFT计算的模型和内容都具有较高的参考价值。在催
  • 挺突然的一场大促,但折扣也未免太惊喜……

  • 是这样的,因为仓库终于成功搬家了(大工程),庆祝乔迁之喜,我们给大家安排上这场清仓大甩卖。自家清仓,不用像S级大促一样搞那么多玩法,主打就是一个惊喜直给的便宜!第一重惊喜,招牌冷
  • 锂固体电解质电导率:机器学习的数据库

  • 转载自公众平台:npj计算材料学本文以传播知识为目的,如有侵权请后台联系我们,我们将在第一时间删除。能源储存是通过利用可再生能源来满足日益增长的能源需求的关键技术。液态