据报道,中国科学技术大学潘建伟院士及其同事陈宇翱、姚星灿与合作者组成的研究团队,首次在玻色-爱因斯坦凝聚体中观测到了极宽的d波势形散射共振,并间接证明了d波分子超流的存在。这一实验发现为超冷原子量子模拟研究带来了全新的机遇和挑战,同时也为研究高阶分波相互作用主导的少体及多体量子物理铺平了道路。日前该成果发表在国际学术期刊《自然·物理》上。
粒子间的碰撞散射是一种基础而又重要的相互作用,无论是宇宙诞生之初的元素产生,还是日常生活中的化学反应,原则上都可以用散射的量子理论来描述。根据散射波函数的对称性,可以将散射过程分为各向同性的s波以及各向异性的p波、d波等高阶分波。与s波散射相比,由高阶分波主导的量子多体系统会展现出更为丰富有趣的现象,但由于高阶分波的散射过程过于复杂,理论计算所需要的资源大大超过了经典计算的能力,严重制约了对相关物理现象的理解。
众所周知,不论是宇宙诞生还是普通的化学反应,都是散射量子相互作用产生的。而根据散射波函数的对称性,可以将散射过程分为各向同性的s波,以及各向异性的p波、d波等高阶分波,其中高阶分波散射过程极为复杂,理论计算要求极高,因此相关研究进展很慢。
而潘建伟团队则通过超冷原子量子模拟的方式,发现了d波势形散射共振,就是在散射共振的附近发现了玻色-爱因斯坦凝聚体的寿命竟可以高达数百毫秒,相较于多体系统的平衡时间高出了很多。简单来说,该d波共振具备了超冷、宽共振、长寿命三大特点,研究员基于此展开d波相互作用的量子模拟研究便较此前容易很多。
潘建伟团队首次证明一种全新量子物态
粒子间的碰撞散射是一种基础而又重要的相互作用,无论是宇宙诞生之初的元素产生,还是日常生活中的化学反应,原则上都可以用散射的量子理论来描述。根据散射波函数的对称性,我们可以将散射过程分为各向同性的s波以及各向异性的p波、d波等高阶分波。与s波散射相比,由高阶分波主导的量子多体系统会展现出更为丰富有趣的现象,比如氦3中的p波超流,铜氧化物高温超导体中的d波库珀对,以及广泛存在的各种生物、化学等动力学过程。遗憾的是,由于高阶分波的散射过程过于复杂,理论计算所需要的资源大大超过了经典计算的能力,严重阻碍了我们对相关物理现象的理解。
得益于系统的纯净性以及丰富的操控与探测技术,超冷原子量子模拟为解决这些难题提供了全新的工具。例如,利用原子之间的s波散射共振,我们可以精密地调节超冷原子之间的相互作用强度与形式,从而实现玻色超新星,量子烟花等新奇的量子现象以及费米超流和超冷分子等重要的量子物态。然而,由于理论和实验层面上的困难,更重要的高阶分波共振的研究目前仍少有开展,其中主要存在着如下几个难题:1)量子简并下的超冷原子往往没有足够的动能穿越高阶分波的离心势垒,从而无法实现强的相互作用;2)高阶分波共振通常都极窄,现有实验手段无法利用它精确的控制原子之间相互作用;3)原子团在共振附近的寿命很短,无法开展有效研究。
留言与评论(共有 0 条评论) |