农业大数据白皮书:调研了国内外800家大数据企业发现了这些趋势

AGDATA

采编:Vito

来源:BRIC农业数据研究

布瑞克新媒体出品

1

农业大数据发展背景介绍

在从事农业研究、数据分析行业十余年的历程中,笔者经历了"智慧农业”、"农业大数据"等词汇从无到有,到异常火爆的全程。农业大数据也好,智慧农业也罢,广义上都属于现代农业服务业,其发展阶段和应用程度,与产业基础、政策环境息息相关,这一点在中美两国的农业大数据产业对比上尤为突出,他山之石可以攻玉,值得我们花一些时间去梳理。

"大数据"(BigData)—词,据称最早以之形容数据处理问题的,是 NASA 研究员迈克尔•考克斯和大卫•埃尔斯沃斯,上世纪九十年代,他们在描述飞机周围气流的模拟计算问题时,要应对和处理超级计算机生成的大量、非结构化、非可视化的数据信息,必须寻求突破经典的数学办法,因而在"数据"之前冠之以"大”用以描述该类问题。

而这个名词发扬光大,迅速火遍全球,则得益于资本和市场的力量,咨询巨擘麦肯锡在 2011 年,发布了一篇著名的报告——“Bigdata:Thenextfrontier forinnovation, competition,andproductivity”。而中国的互联网大佬,以阿里系的马云为代表,则开始于 2014 年喊出了“DT"(大数据时代)的口号。

进入信息时代数十年后,机器计算能力从无到有,从小到大,到超级计算机诞生,人类第一次有能力积攒下来数量巨大、形态多样、巨细靡遗的信息,大量的底层数据,意味着服务器里蕴含着巨大的“数据油田”。而如何从中开采出宝藏,将数据反哺到应用场景,成为了驱动技术发展的新动力。

我们在写这份报告的时候,发现 2009年是一个很有意思的年份,很多如今美国出名的农业大数据相关公司,都诞生于 2009 年前后,或者于 2009 年前后出现质变。其中的原因,引起了我们的兴趣。

2009 年,刚上任的美国总统奥巴马在推动政府信息公开上不遗余力。其实美国早在上世纪六十年代,就由时任总统林登-约翰逊签署了《信息自由法》,旨在保证公民获得在国家安全许可范围内的一切(包括公务)信息。而奥巴马在互联网时代则更进一步,通过发布开放政府指导文件、开放政府合作伙伴计划、开放数据(OpenData)政策等一系列举措,确保联邦政府部门将政务信息作为资产对待。

第三阶段的开放数据(OpenData)政策效果尤为显著,其初衷是将封闭的政府数据向企业、研究者和公众开放,推动新产品、新服务和创业。这项政策的实际意义在于,明确规划了美国政府数据的公开细节,要求政府部门将政务数据内部索引,将所有能够公开的数据清单公示。自条令颁布 30 日内,联邦政府各部门通过统一的在线开放资源库获取工具,以用于政府数据公开,联邦政府首席技术官 ToddPark 和首席信息官 VanRoeke 负责维护开放政府在线资源库,确保各部门能顺利执行开放政府条令。

从此,在美国政府数据公开的网站 Data.gov 上,可以分门别类的找到海量的数据信息,格式、来源、可获得性都保持一致的标准。在农业领域,得益于美国政府自上世纪 60年代颁布的《农业信息法案》,美国农业部(USDA)积攒了数十年的庞大数据资源,也都通过互联网的方式,向全美乃至全世界公开。

OpenData 政策与《农业信息法案》,是美国农业数据资源成为"公共品"的基石,美国农业部关键数据的发布时点,全球所有大宗农产品的交易员、基金经理、产业决策者都会翘首以待,加上芝加哥交易所、纽约交易所,美国成为全球农产品的信息中心、定价中心和金融中心,掌握了行业的话语权,美国的 ADM、嘉吉、邦基等百年巨头,也是在这样的产业环境、信息环境中成长出来,形成覆盖全球的农业网络。

在这些基础上,美国自 2009 年前后诞生了大量的应用创新企业,比较著名的如Solum(土壤数据分析)、ClimateCorporation(农业气象保险)等,在高精尖的建模应用领域进行创新,往往二三十人的团队,就能做出一个 10 亿美金估值的公司。

美国良好的开放的数据使用环境、充足的大数据人才、高度规模化的农业生产组织形式、科学的农业管理机制、强大的农业政策支持、完善的全产业链服务体系,使得其在农业大数据领域的创新应用变现能力很强,应用场景与商业模式清晰,产业和资本形成良性互动,创新团队与传统巨头相得益彰。

相比美国,中国在农业数据信息上基础薄弱,不同的产业发展程度、不同的政策环境,使得中国缺乏具有公信力背书的农业数据资源“公共品”,因而中国的农业大数据企业,在业务形态、商业模式的选择上,大多集中于农业生产效率提升,但又受限于产业结构及农业产值的“天花板”,要像美国那样诞生一批独角兽企业仍需时日,尤其在附加值高、影响力大的农产品定价、风险管理、农业金融创新、品牌创造等领域,中国农业大数据企业任重道远,同时空间广阔。

巧合的是,创始于 2008 年的布瑞克,在"农业+金融+计算机"领域开展跨界创新与融合。彼时正是中国农产品市场加快与全球接轨的窗口期,由于缺乏对全球市场规则的深入了解,以及决策信息情报的严重不对等,大量的中国农业企业在参与国际贸易的过程中遭遇挑战,典型的如“2004 大豆危机”民营压榨企业全面溃败,被外资巨头收编。因此在创立之初,布瑞克就立志于服务中国农业企业参与全球竞争,所切入的业务环节则是大宗农产品全产业链的数据与信息服务,机缘巧合下,布瑞克的研究团队,恰恰也是 2009 年美国政府数据公开的最早一批受益者,通过深入探索、解析 Data.gov 以及 USDA 的海量基础数据,布瑞克迅速构建了一整套农业数据的指标体系和方法论,并将之应用于中国农业数据领域的研究和实践。

布瑞克耕耘十年,在构建中国农业数据指标、体系上已经取得一定成果,十年期间,布瑞克一直坚持投入进行基础数据内容的梳理和整合,经历了一个巨量、繁琐、漫长、艰难的过程,建立了涵盖全球 100 余国家 200 余农产品的全产业链数据集,服务于 500 强农业企业、国家部委、各级政府及农业科研院校。

从 2016 年起,大数据的风口吹进农业领域,得到国家的高度重视,各级政府也开始有动力去审视和梳理政府数据资产,并认识到数据资源作为创新创业"公共品"的属性,布瑞克也同时提出了"县级农业大数据平台及解决方案"的战略方向,致力于将农业大数据的知识、理念、架构和海量基础内容带到农业生产的第一线,与一线生产同呼吸共命运,在实践中打造和优化应用场景、数据模型。同时,布瑞克在产业链条上做延伸布局,农产品集购网(16988)、农牧人两个电商平台的打造,在 B 端链接数十万家下游加工企业、商超、批发市场等,在 C 端链接大量的消费人群,对 B 端、C 端用户各个维度的标签化、数量化分析,直接获取市场的一手数据,通过布瑞克大数据中心的智能化分析,搭建市场与县域生产基地的信息桥梁,让产销对接更为标准化、精细化、提前化,从而优化县域的农业产业布局,提升产品竞争力,提升企业竞争力。

2019 年是一个多事之秋,中美贸易摩擦不断升级,中国自身的经济结构调整与转型也迫在眉睫,而农业农村农民,始终是中国未来发展的巨大想象空间所在,中国的崛起,必须有农业的崛起,有农村和农民的升级。"大数据"作为新的生产要素,其意义与价值不可估量。

2

国内外农业大数据发展比较分析

因为"大数据"概念本身就极其宽泛,本报告中的"大数据' 在业态上的界定为广义上的农业信息服务业,只要能在业务过程中产生、记录、发布、应用涉农类的数据和信息,都纳入我们的视野中。

我们从农业数据的产生、分析和应用的角度,简单的采集调研了国内外800家左右农业大数据样本企业。从服务环节、融资阶段及融资额、成立时间和融资时间等多个角度对国内外企业分布情况进行了比较分析。

  • 从服务内容分布来看,国内样本大数据企业主要集中在混合应用、物联网现场监控平台、市场信息、交易市场和大数据提供商这个部分。国外样本大数据企业主要集中农作物管理软件、自动化、无人机平台-系统、设备、大数据提供商和大数据分析等内容。从内容分布来看,国外农业大数据服务内容多样,服务专业化分工趋势明显。

图表3 按照服务内容国外样本农业大数据企业分布

图表4 历年国内外样本农业大数据企业成立时间分布

图表5 历年不同类型国内外样本农业大数据企业成立时间分布

  • 从企业创立时间来看,国内样本大数据企业比例比较均匀,主要是在2~5年的企业,占比为37%,但是10年以上及5-10年的比例也比较大,分别占总样本比例为22%、21%,主要是一些原来成熟的软硬件企业将自身业务向农业方面扩展,进入农业大数据领域。国外农业大数据和智能农业的因为其基础设施和技术优势,发展应用起步早,样本大数据企业主要集中在10年以上的比较成熟企业,占总样本比例为39%,其次是2-5年的企业,占比34%,表明最近几年的新兴农业大数据企业仍在快速发展。

图表6 国内样本农业大数据企业成立时间分布

图表7 国外样本农业大数据企业成立时间分布

  • 从企业融资次数来看,国内外样本大数据企业近年融资较为频繁,农业大数据相关科创企业渐受资本市场青睐。

图表8 国内外样本农业大数据企业融资次数

  • 从企业融资轮数来看,国内外样本大数据企业种子轮、天使轮、A轮融资完成的企业数量较多,这意味着新的科创企业不断涌入农业大数据领域。另一方面,我们看到企业融资方式多样,企业通过战略投资、股权融资、债务融资、定向增发等多种方式获取融资资金。

图表9 国内外样本农业大数据企业融资轮数

备注:部分未公布融资阶段及融资额,统计仅供参考;

图表10 国内外样本农业大数据企业历年分融资阶段融资次数

备注:部分未公布融资阶段及融资额,统计仅供参考;

  • 从时间上来看,2012年来看有不少的企业进入种子轮、天使轮及以A轮融资,资本大量涌入。分国家来看,中国的农业大数据企业在各融资阶段都有分布,但主要还是在C轮及以前阶段。

图表11 国内外样本大数据企业融资额(单位:万美元)

备注:此为折算数据,备注:部分未公布融资阶段及融资额,统计仅供参考;

  • 从企业融资金额来看,国内外样本大数据企业中美国单位企业融资额远高于中国,中国大数据样本企业融资额近年总体呈整体增长趋势。


3

农业大数据行业趋势展望

3.1跑马圈地,农业数据的产生和沉淀能力是关键

从国内外农业大数据的发展情况来看,以美国为例,美国以政府的开放数据为主,美国农业数据的采集存储非常规范标准,时间序列长,开放程度非常高,在美国政府网站开放的农业相关的数据集高达上百个,涉及到农业生产、消费等各个方面的基础数据。依托政府数据基础,美国的相关企业大多在数据挖掘与应用场景方面发力,价值链较为清晰,也能很快实现数据变现。

而国内农业的数据开放程度比较差,时序性短,而数据的短缺显得尤为致命,因此,无论是通过物联网及智能硬件角度还是从产业服务、软件集成平台等,通过研发、推广,扩大产品应用,提升数据生产能力,仍然是很多农业大数据公司构建未来竞争力的重要手段。

3.2农业大数据公司并购融合将会愈加激烈

在农业大数据发展方面,经过野蛮生产后会产生一系列专业化的农业大数据技术类公司及产业平台,如何提升涉农数据的整合和应用程度,提高应用的效果是关键。

目前农业大数据的应用主要是以商业性企业的数据应用为主,各种应用企业平台层出不穷,各企业在单一专业农业领域或者一个区域的数据采集和服务能力各有优势,对政府部门的数据的整合利用不足,在国家层面上缺少一个统一集成利用,在一定程度上造成信息资源的极大浪费。这就需要农业大数据的头部企业对相关的专业性、区域性的农业大数据公司进行整合兼并,增强自身的数据生产能力,为多数据源及复杂场景的数据挖掘提供数据源和应用场景,以提高企业在未来大数据商业竞争中的竞争力。此外大型农业产业集团从维护自身持久竞争力的角度,对于整合与业务相关的各种专业化、区域性的农业大数据企业也十分有兴趣,这将会增加未来农业大数据公司并购融合程度

3.3农业大数据应用场景进一步细分明晰,部分稀缺应用场景发展前景广阔

目前国内农业大数据的应用不足,相比于国外相对比较精准分工明细的农业大数据及智慧农业应用,国内的大数据应用显得广而不精,形式重于内容,也就是好看有余而效果不足。

相比于国外,我们在气象、土壤、GIS影像系统及SEM-GIS农产品供需模型等商业化应用场景方面,我国的大数据企业仍有很大差距。那么对标国外的精细化的应用场景服务,在这部分稀缺的应用场景方面,将会有大量的新兴企业杀入,如佳格天地,多位联合创始人来源于NASA,瞅准了中国市场GIS影响系统及分析服务的空白,最近完成了6000万元的A轮融资,这部分稀缺应用场景的发展前景将十分不错。

3.4农业规模化趋势不断加强,ERP农场大数据大有可为

在国外农业大数据统计方面,我们看到基于农业生产的第一线的农场的ERP服务的大数据企业比较多。国内随着土地流转的进一步深入开展,农业土地规模化利用的趋势的不断加强,家庭农场和农业合作社等新型农业经营主体的不断发展完善,使得基于规模化的新型农业经营主体的ERP农场大数据服务的市场空间逐步打开。同时,随着国内农业大数据平台的发展、数据的沉淀和技术能力的提高,农业大数据在应用与产业结合的深度将会越来越强,将会在生产决策、农产品质量安全监管、金融保险、种子研发、产品销售等产业的各个环节发挥重要的作用,能够为规模化的农业合作社等新型提供比较全面的服务支持,ERP农场大数据大有可为。

3.5农业大数据的应用和变现场景多元化

随着乡村振兴战略以及数字乡村战略的实施,农业大数据的应用将迎来更广阔的的空间。纵观国内农业大数据企业,在推动农业大数据落地方面有着诸多创新,打造了多元化的应用场景。例如决策端,基于农业生产、销售流通、土地流转、市场、气象等多方面的数据,可构建起农业决策“大脑”,为政府决策、产业发展提供更多的服务和支持;生产端,运用卫星遥感和物联网技术,进行农业数据的采集分析,实现精准种养殖和可追溯等;销售端,集纳大量消费数据、电商数据以及交易、物流的数据,助力农产品的商品化,更精准地配对B端和C端用户;也有企业运用大数据来进行农业的一二三产的产业链整合打通,融入土地流转、农业保险、供应链金融等服务,打造产业闭环。正是有了这些应用场景,大数据才能产生变现的机会。

3.6聚焦“最后一公里”, 农业大数据县域掘金势头正猛

如果大数据的应用不能和实际需求相匹配,那么仍然不能解决数据到农村“最后一公里”的问题。作为中国农业最基础的单元,县域的农业产业就存在产业规划错配、招商引资困难、企业不大不强、战略规划失衡、产销决策随意、风险管理落后、品牌意识不足等问题,从某种角度来说,解决了这些问题,县域经济发展将呈现巨大的潜力。

除了部分企业继续在省市级别的农业大数据领域发力之外,越来越多的企业开始瞄准大数据应用的“最后一公里”,谋求在县域产业领域掘金。其中,创立十年以上的农业大数据企业凭借深厚的数据积累,已在县域开始了快速的复制,例如布瑞克农信集团,截至 2018 年已与 300 多县域达成合作,农信通集团则发起了“亚特兰蒂斯”计划,开启了以县域为单位的农业大数据覆盖。新兴的互联网头部企业,以京东为代表,将“京东云”深入对接县域产业,以期赋能县域新经济。因国情不同,未来一段时间中国农业的生产主体还将是由数亿中小农户组成,作为农业生产管理的一线单位,县级涉农主管部门与县域新型农业生产主体对于产前规划、产中管理、产后销售的数据需求仍是一片蓝海市场。

推 荐 阅 读

Q: 你理解的农业大数据是什么?

欢迎留言与大家分享

请把这篇文章分享给你的朋友

转载 / 投稿请联系:BricSZ_PR@accfutures.com

布瑞克农业大数据是一家通过农业大数据收集、处理、分析和可视化系统,服务于政府、涉农企业、科研机构等行业的大数据应用公司。历时10年,现已发展成为集农业咨询、信息技术、土地流转、电子商务、供应链风控服务为一体的智慧农业大数据综合解决方案提供商。

截止2018年底,布瑞克已与300多县达成农业大数据平台建设和智慧农业合作框架,超过20个县正式开展农业大数据业务。2017年布瑞克县级农业大数据入选农业农村部农业农村大数据实践案例,2018年布瑞克苏州公司入选苏州市独角兽培育库企业。

发表评论
留言与评论(共有 0 条评论)
   
验证码:

相关文章

推荐文章

'); })();