过去几十年来,工程师其实也在不断尝试通过基于预测性数学模型(经典控制论)的软件,去引导机器人进行肢体活动。然而,这个方法在引导机器人肢体执行行走、攀爬和抓取不同形状物体这类极为简单的任务时,被证明无效。
机器人学习或能弥合仿真与现实差距
当人们已习惯机器人数十年如一日的蹒跚学步,科学家们却突然点亮了希望。
日前,苏黎世联邦理工学院机器人系统实验室团队在《科学·机器人学》上发表最新论文,给出了新证据表明,运用数据驱动法设计的机器人软件,有很大希望解决机器人学和人工智能研究长期面临的巨大难题——仿真与现实之间的差距。
团队演示的方法是将经典控制论与机器学习技术相结合。他们首先设计了一个四足机器人的传统数学模型,并给机器人起名“ANYmal”。接下来,再从引导机器人四肢运动的致动器中收集数据,数据输入多个人工智能神经网络系统,从而建立了第二个模型。
这个机器学习模型,就可以自动预测“AMYmal”机器人的肢体运动。经过训练的神经网络,只要插入第一个模型中,就可以在电脑上仿真运行这个混合模型。
团队发现这种利用数据驱动法设计的软件,大大提高了机器人的运动技能——它速度更快,动作也更精准。而且先将运动策略在仿真器中优化,再转入机器人体内在物理世界进行测试,最后机器人的表现,竟然和仿真表现一样好。
混合模型是变革的第一步
这一成就,被认为是机器人及人工智能的一项重要突破,其预示着,曾经不可逾越的仿真与现实之间的差距正在被消弭。
其也预示着新一轮人工智能的重大变革,而混合模型,正是这场变革的第一步。之后,所有的分析模型都将面临“下岗”。
通过机器人在现实环境中收集到的数据,训练机器学习模型——这一方法也被称为“端到端训练”。其正缓慢但坚定地照进现实,在诸如关节式机械臂、多指机械手、无人机,甚至是无人驾驶汽车中得到应用。
不过,现阶段其也存在一定挑战。最重要的就是要优化可扩展性,以确定“端到端训练”是否可以扩展用于引导拥有几十个致动器的复杂机器,譬如类人机器人、制造工厂、智能城市这一类大型系统,进而用数字技术帮助人类切实地提高生活质量。
对人类来说,大脑对未来行动的思考越清晰,人的自我意识能力就越高。如今,机器人在学习的道路上走得更远了。这不仅是一个具有现实意义的突破,解放了一些工程劳动力,也是科学家们开启“机器人自主时代”的标志。
或许不久的将来,机器人工程师将不必再“告诉”机器人如何走路、如何抓取,而是让机器人利用自身收集得来的数据,进行自我学习。
在不久的将来,机器人工程师不需要“告诉”机器人如何行走、如何抓住,也可能利用机器人自身收集的数据进行自我学习。
来源: 科技日报
留言与评论(共有 0 条评论) |