人工智能与制造业融合考验重重

尽管当前人工智能与制造业的融合发展已经显露出一些成效,但是从世界范围看,该领域仍然较为前沿,在技术架构、实施路径、行业标准及产业生态等方面均存在一定的发展瓶颈。

首先是产业总体发展尚不成熟。作为一项基础性、通用性的技术,人工智能在工业领域的应用实践需要产业界多方合作开展大量的融合创新探索,对相关产品、解决方案的成本、可靠性等指标也有较高的要求。从已有的实践案例中可以看到,当前人工智能在制造业的融合创新主要是由数据、知识密集型的制造企业与具备人工智能技术优势的互联网企业或软件企业强强联合推进的,其开发成本、技术壁垒较高,应用覆盖面也相对较窄,这使得人工智能技术暂时不具备在制造业大范围推广的条件。

其次是行业标准有待完善。工业领域的人工智能应用需要基于大样本的数据集建模,这些数据通常是来自智能装备及现场部署的独立传感器。然而,工业现场目前的数据通信标准之间通常不能兼容,无法满足人工智能技术对优化建模数据量基本需求。以工业现场总线为例,目前在工业界常见的通信协议达二十余种,这些协议之间不能直接互联互通,使得信息孤岛的情况在工业界广泛存在。

再次是产业发展保障体系有待健全。人工智能技术作为信息技术的一种,其自身就存在一定的安全风险,引入工业领域后,将与工业系统自身的功能风险叠加放大,这将直接危及到生命安全和国家安全。此外,在面对某些与伦理道德相关的抉择问题时,人工智能系统的研发也缺乏相关的法律标准。例如,向人工智能视频识别系统中输入带有欺骗特征的图片,有可能会引起系统误判而触发一系列的危险动作;在工业事故中,人工智能应急管理系统在面对重大资产与人员安全无法兼顾时也没有权威的处理标准。

作为一项极具发展前景的前沿领域,人工智能与制造业的融合发展尚需政府和产业界多方发力。

首先是要培育产业发展环境。政府和行业协会需要通过培育解决方案服务机构、开展试点示范等方式,引导人工智能技术在ICT、互联网等领域的应用成果向制造业输出,尤其是在轻量化设计、节能降耗、工艺优化、质量提升、运行维护等当前人工智能已经涉足的领域培养一批成熟的解决方案。与此同时也要针对系统开发、现场操作、管理规划等不同层面的需求,分类型、分等级推进人工智能阶梯形人才队伍的培育工作,加强企业员工的再培训,做好工业智能化变革下新旧动能的承接工作。

其次是要加快合作推进行业标准。产业界需要通过组织联盟等形式开展多方合作,面向各工业分类的人工智能应用对数据采集、应用部署等方面的需求,联合制定机器设备、工控系统、工业互联网平台的标准化数据接口及应用参考架构,确保支撑人工智能应用的工业数据能快速有效得以应用。

再次是要统筹协调构建保障体系。面向人工智能技术在未来可能大范围覆盖的工业应用场景,由立法部门及行业协会共同研究制定应用规范、开发守则等涉及到应用安全、伦理道德的行业标准,尽可能规避未来可能出现的相关风险。同时政府需要加快建立工业智能公共评测服务平台,加强对工业智能系统的安全测试服务,制定完善人工智能装备、系统在工业生产应用场景中的安全操作规范守则。

发表评论
留言与评论(共有 0 条评论)
   
验证码:

相关文章

推荐文章

'); })();