在制造业这个领域也算是深耕多年了,虽然出去的时候很少,但是我总是说,从一个厂子就能看出这个行业的行情如何,现在不能说好也不能说坏,也许是这个行业转型的阵痛吧,多了咱也不啰嗦了。
平时也琢磨不少东西,趁着空闲就整理了一些加工的心得,后续还会有更多,也算是奉献给制造业吧,也希望诸君能够学得一些经验和技巧(这都是后话了)
咳咳,言归正传,现在咱们的加工工厂不管是来料加工,还是来图加工,都要用到材料,今天围绕着材料,说一些切削加工的心得,先说常用的:不锈钢材料吧。
不锈钢材料的切削加工
不锈钢作为一种耐腐耐蚀材料,目前广泛地用于许多工业部门和日常生活中,并随着工业的发展其用量越来越大,因此了解其性能,掌握它的切削加工方法也越来越显得重要。
不锈钢的种类多样,性能各异,但根据金相组织特点,可将其分为以下几类:
马氏体不锈钢、铁素体不锈钢:它的合金成分主要是Cr,其含量为12~8%。常见的有1Cr13、2Cr13、3Cr13、4Cr13、9Cr18、30Cr13Mo等,这类钢经淬火回火后,具有适当的硬度、强度以及良好的抗氧化性能。在切削加工时,切屑容易擦伤和磨损刀具。但碳含量增大到0.4~0。5%时,马氏体不锈钢的切削加工性变好。铁素体不锈钢的主要合金成分也是Cr,其含量与马氏体不锈钢相近。在切削加工中,其性能好与前都相近,只不过是其硬度较低,韧性增大而已。总之这两种不锈钢在切削过程中只要选择刀具材料得当,配合合适的几何角度,切削加工难度还是不大。
奥氏体不锈钢和奥氏体加铁素体不锈钢:这两种不锈钢的成人不但含有铬,而且还含有相当高的镍(一般为7~20%),由于这类钢含有较多的镍或锰,故其组织结构稳定,热处理难以使它强化。这类钢材在切削加工中切屑连绵不断,折断困难,同时易产生加工硬化。
奥氏体—铁素体不锈钢仅在组织中含有一定量的铁素体,还存在一定量硬度很高的金属间化合物,其余的性能都与奥氏体钢相似,因此在切削加工中,这两种材料的加工难度较大。奥氏体不锈钢的牌号有1Cr18N9Ti、00Cr18Ni10、O0Cr18Ni14M02Cu2、0Cr18Ni12M02Ti、2Cr13Mn9Ni4等。
常见的奥氏体加铁素体不锈钢有0Cr21N95Ti、1Cr18Mn10Ni5、1Cr18Ni11Si4A1Ti等。在不锈钢不还有一种沉淀硬化型不锈钢。这类钢除了含有较高的铬、镍外,还含有能起沉淀硬化作用的铊、铝、钛、钼等合金元素,使钢具有很高的强度和硬度。属于这种类型的不锈钢有0Cr17Ni4Cn4Nb,oCr15Ni7M02A1。
这类不锈钢的切削加工难度也比较大。不锈钢的切削加工性差,难点到底在哪里,下面就介绍一下它的特点及其解决的方法。
1 不锈钢的切削特点
不锈钢的加工难度从易到顺序是铁素→马氏体型→奥氏体型→奥氏体加铁素体型→沉淀硬化型。现将不锈钢的切削加工特点叙述如下:
加工硬化趋势严重
不锈钢的加工都存在加工硬化倾向,尤其是奥氏体型和奥氏体加铁素体型不锈钢表现得尤为突出。硬化层的硬度可达HV560,比原材料硬度提高两倍以上,硬化层的深度可达切削深度的1/3或更大。造成硬化的原因是不锈钢的塑性好(§>35%),如0Cr18Ni9、1Cr18Ni9Ti、2Cr18Ni19、Cr18Mn10Ni5M03延伸率均大于40%,是40Cr的210~240%,是45#钢的150%以上,因此在塑性变形时晶格畸变严重,强化系数大。
导热系数小
不锈钢的导热系数小,即热的传导能力差,如奥氏体不锈钢仅是一般钢材的28%左右,因此在切削过程中的切削不能及时通过工件,切屑传导出去,而造成大量的切削热集中在刀刃附近,使切削温度大大的升高,如18—8型不锈钢的切削温度高达1000~11000C。45#钢的切削温度只有700~7500C。
切削力大
不锈钢的高温强度、硬度高,如以奥氏体不锈钢为例,其温度高达7000C时,它的综合机械性能仍高于一般结构钢,再加之它的塑性、韧性好,所以在切削加工中消耗的能量多,使切削力增加,如车削1Cr18Ni19Ti的单位切削力比45#钢的单位切削力高25%。
切屑不易折断,易产生积屑瘤
由于不锈钢的韧性、塑性均大,故在车削加工时,切屑连绵不断,这样不仅影响操作的顺利进行,造成安全事故,而且还会挤伤已加工表面。不锈钢含有Cr、Ni、Ti、Mo等元素,这些元素与其它金属的新和性强,易产生粘附现象,并形成积屑瘤。如奥氏体不锈钢的兰脆区发生在2000C左右或更低的温度,而碳钢的兰脆区发生在3000C左右,这意味着切削奥氏体不锈钢产生积屑瘤的温度比碳钢的还低。
在不锈钢的切削过程中,切削温度高,切削力大,再加之合金元素Cr、Ni、Ti等元素与其它金属的新和性好,致使刀具极易产生粘结,扩散磨损,因此容易在前刀面形成月牙洼。造成刃部强度降低,并产生微小的剥落和缺口;再由于不锈钢中的碳化物硬质点使刀具产生剧烈的磨料磨损,所以在不锈钢的切削过程中,刀具磨损特别严重。
2 刀具材料及刀具几何角度选择
刀具材料的选择
不锈钢是经过高熔点、高激活能元素强化的合金,尤其是其组元复杂,合金元素含量高。这样导致材料塑性大、韧性好,导热系数低。切削加工时,被切层变形阻力大,加工表面的硬化深度和硬化程度均增加,与此同时,其变形温度升高,切屑粘附倾向增大。根据这些特点,在选择硬质合金刀具材料时,主要考虑其高温强度、高温硬度并重点保证足够的韧性。因此在不锈钢切削加工中,原则上选用K类合金,或者说,尽可能采用不含碳化钛或含碳化钛较少,添加碳化钽(铌)及其它难熔合金元素的硬质合金。其主要原因是K类合金具有较高的抗弯强度,能保证刀具采用较大前角和锋利的刃口。其次是K类合金导热性能好,可以避免切削热集中在切削刃,使切削温度降低。
根据这一观点,在一般不锈钢的切削中我们推荐如下几种合金:
YG6A、YG8N、YW1、YW2
最近几年,材料的性能和工件的精度都提高较快,因此对刀具材料的票求也相应提高,为了获得更好的效果,我们建议采用:
YW4、YS2T、YD15等新牌号合金
对于不锈钢切削用硬质合金的选择,其观点也不完全一致,如有人提出切削不锈钢宜采用P类合金,并作了不少试验,证明P类合金好。根据它这种理论,我们YS25作为不锈钢的铣削试验,证明确实有上佳的表现。经过认真分析,这两种观点都有一定道理,但都不全面。我们认为,在低速断续切削时,可采用K类合金,而高速切削时,一定要采用P合金。
刀具几何角度的选择
前角:不锈钢的硬度、强度虽不很高,但其塑性好,韧性大,热强性高,切削时切屑不易被切离,其主要原则是在保证不崩刃的前提下,尽量采用较大的前角。这样做的主要原因是:在250以下范围增加前角,能使单位切削力减少,节省能耗;减少切屑与刀具的粘结,改善前刀面摩擦;降低切削温度,减少刀片的扩散磨损。因此,在车削不锈钢时,前角的大致范围是150~300。粗加工时取较小的值,精加工时取较大值;未经调质处理,或已经调质处理,但硬度较低的不锈钢,可取较大值;工件直径较小或薄壁件,也宜取较大值。精加工奥氏体不锈钢时,前角可选200~250,粗加工时,可取较大前角加—300倒棱角和(0.5~1)进给量的倒棱宽度,这样做既加强了刀尖强度,又不增加很多切削力。
后角:在金属切削加工中,后角也是一个很重要的角度,它的选择合理与否,对切削加工有明显影响。一般说来,后角的选择主要取决于两个方面:一方面是切削层厚度,其值越小,后角应越大;另一方面是根据刀具材料的强度而定,强度高,后角较大,反之,后角较小。在不锈钢的切削加工中,硬质合金刀具后角值大多采用:
粗加工为40~60,精加工时略大于60
为了增加刀尖强度,切削不锈钢时,刃倾角λS一般取-20~-60,断续切削时,λS更小,通常取-50~-150,这是因为已经采用了大前角的刀具应该由较小的负刃倾角来保证刀具强度。在生产实践中,为了更好地提高刀尖强度与散热能力,通常采用双刃倾角车刀,能收到理想的效果。
切削用量的选择
切削不锈钢时,其切削用量一般是:进给量不得小于0.1mm/转,避免微量进给,以免在加工硬化区进行切削;切削深度选择原帽是避开冷硬层,但有时还要根据工件的加工余量而定。切削速度的选择一般根据刀具材料而定,热稳定性好的刀具材料,其切削速度可高一些。但还应注意是,在选择切削速度时应避开振动区域,这是由于后刀面摩擦和切屑形成时所引起的振动的某一切削速度下表现得特别剧烈,因此我们要避开这一振动区速度,防止切削刃微崩,提高刀具耐用度。
近年来,对切削不锈钢进行了大量的研究工作,对其切削理论也有更深的认识。如有人提出,切削不锈钢宜在温下进行,通过切削奥氏体不锈钢的试验,证明其在8000C左右切削时最为适宜。其主要原因是:在奥氏体切削过程中,粘结和扩散磨损是影响刀具耐用度的重要原因,而在8000C左右这个温度区间,能明显减少刀具一工件,刀具一切屑之间的粘结,同时扩散磨损又没有明显增加。并且在这个温度下,有利于被切件的塑性变形,使切削力明显降低,切削过程轻快。根据这种观点,切削不锈钢宜采用较高的切削速度,为了使切削温度达到8000C左右,相应的切削速度是80~15m/min,并配以适当的切削深度和进给量,并推荐使用金属陶瓷刀片。
后续还会有:淬火钢,高温合金,钛合金,铸铁的材料介绍,如果您觉得有用的话,就帮忙分享出去,让更多在制造业的小伙伴们学到内容,收藏,转发一波!
留言与评论(共有 0 条评论) |