环境
代码示例
tEnv.executeSql("CREATE TABLE tb_person_hudi ( id BIGINT, age INT, name STRING,create_time TIMESTAMP ( 3 ), time_stamp TIMESTAMP(3),PRIMARY KEY ( id ) NOT ENFORCED ) WITH (
" +
" 'connector' = 'hudi',
" +
" 'table.type' = 'MERGE_ON_READ',
" +
" 'path' = 'file:///D:/data/hadoop3.2.1/warehouse/tb_person_hudi',
" +
" 'read.start-commit' = '20220722103000',
" +
// " 'read.end-commit' = '20220722104000',
" +
" 'read.task' = '1',
" +
" 'read.streaming.enabled' = 'true',
" +
" 'read.streaming.check-interval' = '30'
" +
")");
Table table = tEnv.sqlQuery("select * from tb_person_hudi ");
tEnv.toChangelogStream(table).print().setParallelism(1);
env.execute("test");
流程分析
hudi源入口(HoodieTableSource)
HoodieTableSource实现ScanTableSource,SupportsPartitionPushDown,SupportsProjectionPushDown,SupportsLimitPushDown,SupportsFilterPushDown接口,后4个接口主要是支持对查询计划的优化。ScanTableSource则提供了读取hudi表的具体实现,核心方法为org.apache.hudi.table.HoodieTableSource#getScanRuntimeProvider:
if (conf.getBoolean(FlinkOptions.READ_AS_STREAMING)) { //开启了流式读(read.streaming.enabled)
StreamReadMonitoringFunction monitoringFunction = new StreamReadMonitoringFunction(
conf, FilePathUtils.toFlinkPath(path), maxCompactionMemoryInBytes, getRequiredPartitionPaths());
InputFormat inputFormat = getInputFormat(true);
OneInputStreamOperatorFactory factory = StreamReadOperator.factory((MergeOnReadInputFormat) inputFormat);
SingleOutputStreamOperator source = execEnv.addSource(monitoringFunction, getSourceOperatorName("split_monitor"))
.setParallelism(1)
.transform("split_reader", typeInfo, factory)
.setParallelism(conf.getInteger(FlinkOptions.READ_TASKS));
return new DataStreamSource<>(source);
}
上面代码在流环境中创建了一个SourceFunction(StreamReadMonitoringFunction)和一个自定义的转换(StreamReadOperator)
定时监控元数据获得增量分片(StreamReadMonitoringFunction)
StreamReadMonitoringFunction负责定时(read.streaming.check-interval)扫描hudi表的元数据目录.hoodie,如果发现在active timeline上有新增的instant[action=commit,deltacommit,compaction,replace && active=completed],从这些instant信息中可以知道数据变更写到了哪些文件(parquet,log),然后构建成分片对象(MergeOnReadInputSplit)。
public void monitorDirAndForwardSplits(SourceContext context) {
HoodieTableMetaClient metaClient = getOrCreateMetaClient();
IncrementalInputSplits.Result result =
incrementalInputSplits.inputSplits(metaClient, this.hadoopConf, this.issuedInstant);
for (MergeOnReadInputSplit split : result.getInputSplits()) {
context.collect(split);
}
}
获取增量分片(IncrementalInputSplits)
主要逻辑在方法IncrementalInputSplits#inputSplits(metaClient, hadoopConf, issuedInstant),需要先了解hudi关于timeline和instant的一些基本概念,详细的流程如下图所示:
如果flink job首次运行指定了read.start-commit和read.end-commit,但是该范围是比较久以前,instant已经被归档,那么流作业将永远不能消费到数据
https://github.com/apache/hudi/issues/6167
读取数据文件(StreamReadOperator)
StreamReadOperator算子接收分片后会缓存在队列Queue splits,然后不停从队列中poll分片放到线程池中执行
private void processSplits() throws IOException { format.open(split); consumeAsMiniBatch(split); enqueueProcessSplits(); }
主要有三个步骤:
留言与评论(共有 0 条评论) “” |