为了节省篇幅,这一节只挑部分贴代码,更多的代码和包的导入请参考 附件\model\yolo.py。(参考:https://gitee.com/mindspore/models/tree/r1.5/official/cv/yolov3_darknet53)
class YoloBlock 是Darknet53 输出后的处理模块,包括YOLOv3结构图(参见 YOLOv3人体目标检测模型实现(一))中的 Convolutional Set 以及后面的卷积:
class YoloBlock(nn.Cell): """ YoloBlock for YOLOv3. Args: in_channels: Integer. Input channel. out_chls: Integer. Middle channel. out_channels: Integer. Output channel. Returns: Tuple, tuple of output tensor,(f1,f2,f3). Examples: YoloBlock(1024, 512, 255) """ def __init__(self, in_channels, out_chls, out_channels): super(YoloBlock, self).__init__() out_chls_2 = out_chls*2 self.conv0 = _conv_bn_relu(in_channels, out_chls, ksize=1) self.conv1 = _conv_bn_relu(out_chls, out_chls_2, ksize=3) self.conv2 = _conv_bn_relu(out_chls_2, out_chls, ksize=1) self.conv3 = _conv_bn_relu(out_chls, out_chls_2, ksize=3) self.conv4 = _conv_bn_relu(out_chls_2, out_chls, ksize=1) self.conv5 = _conv_bn_relu(out_chls, out_chls_2, ksize=3) self.conv6 = nn.Conv2d(out_chls_2, out_channels, kernel_size=1, stride=1, has_bias=True) def construct(self, x): c1 = self.conv0(x) c2 = self.conv1(c1) c3 = self.conv2(c2) c4 = self.conv3(c3) c5 = self.conv4(c4) c6 = self.conv5(c5) out = self.conv6(c6) return c5, out
class YOLOv3 则将主干网络和 YoloBlock 组合起来(包含上采样)成为结构图中完整的YOLOv3模型:
class YOLOv3(nn.Cell): """ YOLOv3 Network. Note: backbone = darknet53 Args: backbone_shape: List. Darknet output channels shape. backbone: Cell. Backbone Network. out_channel: Integer. Output channel. Returns: Tensor, output tensor. Examples: YOLOv3(backbone_shape=[64, 128, 256, 512, 1024] backbone=darknet53(), out_channel=255) """ def __init__(self, backbone_shape, backbone, out_channel): super(YOLOv3, self).__init__() self.out_channel = out_channel self.backbone = backbone self.backblock0 = YoloBlock(backbone_shape[-1], out_chls=backbone_shape[-2], out_channels=out_channel) self.conv1 = _conv_bn_relu(in_channel=backbone_shape[-2], out_channel=backbone_shape[-2]//2, ksize=1) self.backblock1 = YoloBlock(in_channels=backbone_shape[-2]+backbone_shape[-3], out_chls=backbone_shape[-3], out_channels=out_channel) self.conv2 = _conv_bn_relu(in_channel=backbone_shape[-3], out_channel=backbone_shape[-3]//2, ksize=1) self.backblock2 = YoloBlock(in_channels=backbone_shape[-3]+backbone_shape[-4], out_chls=backbone_shape[-4], out_channels=out_channel) self.concat = P.Concat(axis=1) def construct(self, x): # input_shape of x is (batch_size, 3, h, w) # feature_map1 is (batch_size, backbone_shape[2], h/8, w/8) # feature_map2 is (batch_size, backbone_shape[3], h/16, w/16) # feature_map3 is (batch_size, backbone_shape[4], h/32, w/32) img_hight = P.Shape()(x)[2] img_width = P.Shape()(x)[3] feature_map1, feature_map2, feature_map3 = self.backbone(x) con1, big_object_output = self.backblock0(feature_map3) con1 = self.conv1(con1) ups1 = P.ResizeNearestNeighbor((img_hight // 16, img_width // 16))(con1) con1 = self.concat((ups1, feature_map2)) con2, medium_object_output = self.backblock1(con1) con2 = self.conv2(con2) ups2 = P.ResizeNearestNeighbor((img_hight // 8, img_width // 8))(con2) con3 = self.concat((ups2, feature_map1)) _, small_object_output = self.backblock2(con3) return big_object_output, medium_object_output, small_object_output
class DetectionBlock 负责对YOLOv3的输出下图中的计算:
class DetectionBlock(nn.Cell): """ YOLOv3 detection Network. It will finally output the detection result. Args: scale: Character. config: Configuration. is_training: Bool, Whether train or not, default True. Returns: Tuple, tuple of output tensor,(f1,f2,f3). Examples: DetectionBlock(scale='l',stride=32,config=config) """ def __init__(self, scale, config=None, is_training=True): super(DetectionBlock, self).__init__() self.config = config if scale == 's': idx = (0, 1, 2) elif scale == 'm': idx = (3, 4, 5) elif scale == 'l': idx = (6, 7, 8) else: raise KeyError("Invalid scale value for DetectionBlock") self.anchors = Tensor([self.config.anchor_scales for i in idx], ms.float32) self.num_anchors_per_scale = 3 self.num_attrib = 4+1+self.config.num_classes self.lambda_coord = 1 self.sigmoid = nn.Sigmoid() self.reshape = P.Reshape() self.tile = P.Tile() self.concat = P.Concat(axis=-1) self.conf_training = is_training def construct(self, x, input_shape): num_batch = P.Shape()(x)[0] grid_size = P.Shape()(x)[2:4] # Reshape and transpose the feature to [n, grid_size[0], grid_size[1], 3, num_attrib] prediction = P.Reshape()(x, (num_batch, self.num_anchors_per_scale, self.num_attrib, grid_size[0], grid_size[1])) prediction = P.Transpose()(prediction, (0, 3, 4, 1, 2)) range_x = range(grid_size[1]) range_y = range(grid_size[0]) grid_x = P.Cast()(F.tuple_to_array(range_x), ms.float32) grid_y = P.Cast()(F.tuple_to_array(range_y), ms.float32) # Tensor of shape [grid_size[0], grid_size[1], 1, 1] representing the coordinate of x/y axis for each grid # [batch, gridx, gridy, 1, 1] grid_x = self.tile(self.reshape(grid_x, (1, 1, -1, 1, 1)), (1, grid_size[0], 1, 1, 1)) grid_y = self.tile(self.reshape(grid_y, (1, -1, 1, 1, 1)), (1, 1, grid_size[1], 1, 1)) # Shape is [grid_size[0], grid_size[1], 1, 2] grid = self.concat((grid_x, grid_y)) box_xy = prediction[:, :, :, :, :2] box_wh = prediction[:, :, :, :, 2:4] box_confidence = prediction[:, :, :, :, 4:5] box_probs = prediction[:, :, :, :, 5:] # gridsize1 is x # gridsize0 is y box_xy = (self.sigmoid(box_xy) + grid) / P.Cast()(F.tuple_to_array((grid_size[1], grid_size[0])), ms.float32) # box_wh is w->h box_wh = P.Exp()(box_wh) * self.anchors / input_shape box_confidence = self.sigmoid(box_confidence) box_probs = self.sigmoid(box_probs) if self.conf_training: return grid, prediction, box_xy, box_wh return self.concat((box_xy, box_wh, box_confidence, box_probs))
class YoloLossBlock 用于计算模型推理得到的3个输出特征图的损失:
class YoloLossBlock(nn.Cell): """ Loss block cell of YOLOV3 network. """ def __init__(self, scale, config=None): super(YoloLossBlock, self).__init__() self.config = config if scale == 's': # anchor mask idx = (0, 1, 2) elif scale == 'm': idx = (3, 4, 5) elif scale == 'l': idx = (6, 7, 8) else: raise KeyError("Invalid scale value for DetectionBlock") self.anchors = Tensor([self.config.anchor_scales for i in idx], ms.float32) self.ignore_threshold = Tensor(self.config.ignore_threshold, ms.float32) self.concat = P.Concat(axis=-1) self.iou = Iou() self.reduce_max = P.ReduceMax(keep_dims=False) self.xy_loss = XYLoss() self.wh_loss = WHLoss() self.confidenceLoss = ConfidenceLoss() self.classLoss = ClassLoss() def construct(self, grid, prediction, pred_xy, pred_wh, y_true, gt_box, input_shape): # prediction : origin output from yolo # pred_xy: (sigmoid(xy)+grid)/grid_size # pred_wh: (exp(wh)*anchors)/input_shape # y_true : after normalize # gt_box: [batch, maxboxes, xyhw] after normalize object_mask = y_true[:, :, :, :, 4:5] class_probs = y_true[:, :, :, :, 5:] grid_shape = P.Shape()(prediction)[1:3] grid_shape = P.Cast()(F.tuple_to_array(grid_shape[::-1]), ms.float32) pred_boxes = self.concat((pred_xy, pred_wh)) true_xy = y_true[:, :, :, :, :2] * grid_shape - grid true_wh = y_true[:, :, :, :, 2:4] true_wh = P.Select()(P.Equal()(true_wh, 0.0), P.Fill()(P.DType()(true_wh), P.Shape()(true_wh), 1.0), true_wh) true_wh = P.Log()(true_wh / self.anchors * input_shape) # 2-w*h for large picture, use small scale, since small obj need more precise box_loss_scale = 2 - y_true[:, :, :, :, 2:3] * y_true[:, :, :, :, 3:4] gt_shape = P.Shape()(gt_box) gt_box = P.Reshape()(gt_box, (gt_shape[0], 1, 1, 1, gt_shape[1], gt_shape[2])) # add one more dimension for broadcast iou = self.iou(P.ExpandDims()(pred_boxes, -2), gt_box) # gt_box is x,y,h,w after normalize # [batch, grid[0], grid[1], num_anchor, num_gt] best_iou = self.reduce_max(iou, -1) # [batch, grid[0], grid[1], num_anchor] # ignore_mask IOU too small ignore_mask = best_iou < self.ignore_threshold ignore_mask = P.Cast()(ignore_mask, ms.float32) ignore_mask = P.ExpandDims()(ignore_mask, -1) # ignore_mask backpro will cause a lot maximunGrad and minimumGrad time consume. # so we turn off its gradient ignore_mask = F.stop_gradient(ignore_mask) xy_loss = self.xy_loss(object_mask, box_loss_scale, prediction[:, :, :, :, :2], true_xy) wh_loss = self.wh_loss(object_mask, box_loss_scale, prediction[:, :, :, :, 2:4], true_wh) confidence_loss = self.confidenceLoss(object_mask, prediction[:, :, :, :, 4:5], ignore_mask) class_loss = self.classLoss(object_mask, prediction[:, :, :, :, 5:], class_probs) loss = xy_loss + wh_loss + confidence_loss + class_loss batch_size = P.Shape()(prediction)[0] return loss / batch_size
损失函数的实现可见 附件\model\loss.py。
最后,class YOLOV3DarkNet53 将前面的 class 组装在一起:
class YOLOV3DarkNet53(nn.Cell): """ Darknet based YOLOV3 network. Args: is_training: Bool. Whether train or not. Returns: Cell, cell instance of Darknet based YOLOV3 neural network. Examples: YOLOV3DarkNet53(True) """ def __init__(self, is_training, config=None): super(YOLOV3DarkNet53, self).__init__() self.config = config self.keep_detect = self.config.keep_detect self.tenser_to_array = P.TupleToArray() # YOLOv3 network self.feature_map = YOLOv3(backbone=DarkNet(ResidualBlock, [1, 2, 8, 8, 4], [32, 64, 128, 256, 512], [64, 128, 256, 512, 1024], detect=True), backbone_shape=[64, 128, 256, 512, 1024], out_channel=self.config.out_channel) # prediction on the default anchor boxes self.detect_1 = DetectionBlock('l', is_training=is_training, config=self.config) self.detect_2 = DetectionBlock('m', is_training=is_training, config=self.config) self.detect_3 = DetectionBlock('s', is_training=is_training, config=self.config) def construct(self, x): input_shape = F.shape(x)[2:4] input_shape = F.cast(self.tenser_to_array(input_shape), ms.float32) big_object_output, medium_object_output, small_object_output = self.feature_map(x) if not self.keep_detect: return big_object_output, medium_object_output, small_object_output output_big = self.detect_1(big_object_output, input_shape) output_me = self.detect_2(medium_object_output, input_shape) output_small = self.detect_3(small_object_output, input_shape) # big is the final output which has smallest feature map return output_big, output_me, output_small
将 loss 的计算和网络组装在一起:
class YoloWithLossCell(nn.Cell): """YOLOV3 loss.""" def __init__(self, network, config=None): super(YoloWithLossCell, self).__init__() self.yolo_network = network self.config = config self.tenser_to_array = P.TupleToArray() self.loss_big = YoloLossBlock('l', self.config) self.loss_me = YoloLossBlock('m', self.config) self.loss_small = YoloLossBlock('s', self.config) def construct(self, x, y_true_0, y_true_1, y_true_2, gt_0, gt_1, gt_2): input_shape = F.shape(x)[2:4] input_shape = F.cast(self.tenser_to_array(input_shape), ms.float32) yolo_out = self.yolo_network(x) loss_l = self.loss_big(*yolo_out[0], y_true_0, gt_0, input_shape) loss_m = self.loss_me(*yolo_out[1], y_true_1, gt_1, input_shape) loss_s = self.loss_small(*yolo_out[2], y_true_2, gt_2, input_shape) return loss_l + loss_m + loss_s
(未完,请见下一篇 YOLOv3人体目标检测模型实现(三))
留言与评论(共有 0 条评论) “” |