数据倾斜是指我们在并行进行数据处理的时候,由于数据散列引起Spark的单个Partition的分布不均,导致大量的数据集中分布到一台或者几台计算节点上,导致处理速度远低于平均计算速度,从而拖延导致整个计算过程过慢,影响整个计算性能。
数据倾斜带来的问题
单个或者多个Task长尾执行,拖延整个任务运行时间,导致整体耗时过大。单个Task处理数据过多,很容易导致OOM。
数据倾斜的产生原因
数据倾斜一般是发生在 shuffle 类的算子、SQL函数导致,具体如以下:
类型 | RDD | SQL |
去重 | distinct | distinct |
聚合 | groupByKey、reduceByKey、aggregateByKey | group by |
关联 | join、left join、right join | join、left join、right join |
通过Spark web ui event timeline观察明显长尾任务:
RDD进行抽取:
val cscTopKey: Array[(Int, Row)] = sampleSKew(sparkSession,"default.tab_spark","id")println(cscTopKey.mkString("
")) def sampleSKew( sparkSession: SparkSession, tableName: String, keyColumn: String ): Array[(Int, Row)] = { val df: DataFrame = sparkSession.sql("select " + keyColumn + " from " + tableName) val top10Key: Array[(Int, Row)] = df .select(keyColumn).sample(withReplacement = false, 0.1).rdd .map(k => (k, 1)).reduceByKey(_ + _) .map(k => (k._2, k._1)).sortByKey(ascending = false) .take(10) top10Key }
SQL进行抽取:
SELECT id,conut(1) as cnFROM default.tab_spark_test_3GROUP BY id ORDER BY cn DESCLIMIT 100;###结果集100000,2000012100001,1600012100002,1
为了减少 shuffle 数据量以及 reduce 端的压力,通常 Spark SQL 在 map 端会做一个partial aggregate(通常叫做预聚合或者偏聚合),即在 shuffle 前将同一分区内所属同 key 的记录先进行一个预结算,再将结果进行 shuffle,发送到 reduce 端做一个汇总,类似 MR 的提前Combiner,所以执行计划中 HashAggregate 通常成对出现。但是这种也会出现问题,如果key重复的量级特别大,Combiner也是解决不了本质问题。
解决方案:
sparkSession.udf.register("random_prefix", ( value: Int, num: Int ) => randomPrefixUDF(value, num))sparkSession.udf.register("remove_random_prefix", ( value: String ) => removeRandomPrefixUDF(value)) //t1 增加前缀,t2按照加盐的key进行聚,t3去除加盐,聚合 val sql = """ |select | id, | sum(sell) totalSell |from | ( | select | remove_random_prefix(random_id) id, | sell | from | ( | select | random_id, | sum(pic) sell | from | ( | select | random_prefix(id, 6) random_id, | pic | from | default.tab_spark_test_3 | ) t1 | group by random_id | ) t2 | ) t3 |group by | id """.stripMargin def randomPrefixUDF( value: Int, num: Int ): String = { new Random().nextInt(num).toString + "_" + value } def removeRandomPrefixUDF( value: String ): String = { value.toString.split("_")(1) }
1、适用场景
适用于 join 时出现数据倾斜。
2、解决逻辑
a.将存在倾斜的表,根据抽样结果,拆分为倾斜 key(skew 表)和没有倾斜 key(common)的两个数据集;
b.将 skew 表的 key 全部加上随机前缀,然后对另外一个不存在严重数据倾斜的数据集(old 表)整体与随机前缀集作笛卡尔乘积(即将数据量扩大 N 倍,得到 new 表)。
c.打散的 skew 表 join 扩容的 new 表
union common 表 join old 表
以下为打散大 key 和扩容小表的实现思路:
1、打散大表:实际就是数据一进一出进行处理,对大 key 前拼上随机前缀实现打散;
2、扩容小表:实际就是将 DataFrame 中每一条数据,转成一个集合,并往这个集合里循环添加 10 条数据,最后使用 flatmap 压平此集合,达到扩容的效果。
/** * 打散大表 扩容小表 解决数据倾斜 * * @param sparkSession */ def scatterBigAndExpansionSmall(sparkSession: SparkSession): Unit = { import sparkSession.implicits._ val saleCourse = sparkSession.sql("select *from sparktuning.sale_course") val coursePay = sparkSession.sql("select * from sparktuning.course_pay") .withColumnRenamed("discount", "pay_discount") .withColumnRenamed("createtime", "pay_createtime") val courseShoppingCart = sparkSession.sql("select * from sparktuning.course_shopping_cart") .withColumnRenamed("discount", "cart_discount") .withColumnRenamed("createtime", "cart_createtime") // TODO 1、拆分 倾斜的key val commonCourseShoppingCart: Dataset[Row] = courseShoppingCart.filter(item => item.getAs[Long]("courseid") != 101 && item.getAs[Long]("courseid") != 103) val skewCourseShoppingCart: Dataset[Row] = courseShoppingCart.filter(item => item.getAs[Long]("courseid") == 101 || item.getAs[Long]("courseid") == 103) //TODO 2、将倾斜的key打散 打散36份 val newCourseShoppingCart = skewCourseShoppingCart.mapPartitions((partitions: Iterator[Row]) => { partitions.map(item => { val courseid = item.getAs[Long]("courseid") val randInt = Random.nextInt(36) CourseShoppingCart(courseid, item.getAs[String]("orderid"), item.getAs[String]("coursename"), item.getAs[String]("cart_discount"), item.getAs[String]("sellmoney"), item.getAs[String]("cart_createtime"), item.getAs[String]("dt"), item.getAs[String]("dn"), randInt + "_" + courseid) }) }) //TODO 3、小表进行扩容 扩大36倍 val newSaleCourse = saleCourse.flatMap(item => { val list = new ArrayBuffer[SaleCourse]() val courseid = item.getAs[Long]("courseid") val coursename = item.getAs[String]("coursename") val status = item.getAs[String]("status") val pointlistid = item.getAs[Long]("pointlistid") val majorid = item.getAs[Long]("majorid") val chapterid = item.getAs[Long]("chapterid") val chaptername = item.getAs[String]("chaptername") val edusubjectid = item.getAs[Long]("edusubjectid") val edusubjectname = item.getAs[String]("edusubjectname") val teacherid = item.getAs[Long]("teacherid") val teachername = item.getAs[String]("teachername") val coursemanager = item.getAs[String]("coursemanager") val money = item.getAs[String]("money") val dt = item.getAs[String]("dt") val dn = item.getAs[String]("dn") for (i <- 0 until 36) { list.append(SaleCourse(courseid, coursename, status, pointlistid, majorid, chapterid, chaptername, edusubjectid, edusubjectname, teacherid, teachername, coursemanager, money, dt, dn, i + "_" + courseid)) } list }) // TODO 4、倾斜的大key 与 扩容后的表 进行join val df1: DataFrame = newSaleCourse .join(newCourseShoppingCart.drop("courseid").drop("coursename"), Seq("rand_courseid", "dt", "dn"), "right") .join(coursePay, Seq("orderid", "dt", "dn"), "left") .select("courseid", "coursename", "status", "pointlistid", "majorid", "chapterid", "chaptername", "edusubjectid" , "edusubjectname", "teacherid", "teachername", "coursemanager", "money", "orderid", "cart_discount", "sellmoney", "cart_createtime", "pay_discount", "paymoney", "pay_createtime", "dt", "dn") // TODO 5、没有倾斜大key的部分 与 原来的表 进行join val df2: DataFrame = saleCourse .join(commonCourseShoppingCart.drop("coursename"), Seq("courseid", "dt", "dn"), "right") .join(coursePay, Seq("orderid", "dt", "dn"), "left") .select("courseid", "coursename", "status", "pointlistid", "majorid", "chapterid", "chaptername", "edusubjectid" , "edusubjectname", "teacherid", "teachername", "coursemanager", "money", "orderid", "cart_discount", "sellmoney", "cart_createtime", "pay_discount", "paymoney", "pay_createtime", "dt", "dn") // TODO 6、将 倾斜key join后的结果 与 普通key join后的结果,uinon起来 df1 .union(df2) .write.mode(SaveMode.Overwrite).insertInto("sparktuning.salecourse_detail") }
留言与评论(共有 0 条评论) “” |